|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from annotator.uniformer.mmcv.cnn import ConvModule, xavier_init
|
|
|
|
from ..builder import NECKS
|
|
|
|
|
|
@NECKS.register_module()
|
|
class FPN(nn.Module):
|
|
"""Feature Pyramid Network.
|
|
|
|
This is an implementation of - Feature Pyramid Networks for Object
|
|
Detection (https://arxiv.org/abs/1612.03144)
|
|
|
|
Args:
|
|
in_channels (List[int]): Number of input channels per scale.
|
|
out_channels (int): Number of output channels (used at each scale)
|
|
num_outs (int): Number of output scales.
|
|
start_level (int): Index of the start input backbone level used to
|
|
build the feature pyramid. Default: 0.
|
|
end_level (int): Index of the end input backbone level (exclusive) to
|
|
build the feature pyramid. Default: -1, which means the last level.
|
|
add_extra_convs (bool | str): If bool, it decides whether to add conv
|
|
layers on top of the original feature maps. Default to False.
|
|
If True, its actual mode is specified by `extra_convs_on_inputs`.
|
|
If str, it specifies the source feature map of the extra convs.
|
|
Only the following options are allowed
|
|
|
|
- 'on_input': Last feat map of neck inputs (i.e. backbone feature).
|
|
- 'on_lateral': Last feature map after lateral convs.
|
|
- 'on_output': The last output feature map after fpn convs.
|
|
extra_convs_on_inputs (bool, deprecated): Whether to apply extra convs
|
|
on the original feature from the backbone. If True,
|
|
it is equivalent to `add_extra_convs='on_input'`. If False, it is
|
|
equivalent to set `add_extra_convs='on_output'`. Default to True.
|
|
relu_before_extra_convs (bool): Whether to apply relu before the extra
|
|
conv. Default: False.
|
|
no_norm_on_lateral (bool): Whether to apply norm on lateral.
|
|
Default: False.
|
|
conv_cfg (dict): Config dict for convolution layer. Default: None.
|
|
norm_cfg (dict): Config dict for normalization layer. Default: None.
|
|
act_cfg (str): Config dict for activation layer in ConvModule.
|
|
Default: None.
|
|
upsample_cfg (dict): Config dict for interpolate layer.
|
|
Default: `dict(mode='nearest')`
|
|
|
|
Example:
|
|
>>> import torch
|
|
>>> in_channels = [2, 3, 5, 7]
|
|
>>> scales = [340, 170, 84, 43]
|
|
>>> inputs = [torch.rand(1, c, s, s)
|
|
... for c, s in zip(in_channels, scales)]
|
|
>>> self = FPN(in_channels, 11, len(in_channels)).eval()
|
|
>>> outputs = self.forward(inputs)
|
|
>>> for i in range(len(outputs)):
|
|
... print(f'outputs[{i}].shape = {outputs[i].shape}')
|
|
outputs[0].shape = torch.Size([1, 11, 340, 340])
|
|
outputs[1].shape = torch.Size([1, 11, 170, 170])
|
|
outputs[2].shape = torch.Size([1, 11, 84, 84])
|
|
outputs[3].shape = torch.Size([1, 11, 43, 43])
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
num_outs,
|
|
start_level=0,
|
|
end_level=-1,
|
|
add_extra_convs=False,
|
|
extra_convs_on_inputs=False,
|
|
relu_before_extra_convs=False,
|
|
no_norm_on_lateral=False,
|
|
conv_cfg=None,
|
|
norm_cfg=None,
|
|
act_cfg=None,
|
|
upsample_cfg=dict(mode='nearest')):
|
|
super(FPN, self).__init__()
|
|
assert isinstance(in_channels, list)
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.num_ins = len(in_channels)
|
|
self.num_outs = num_outs
|
|
self.relu_before_extra_convs = relu_before_extra_convs
|
|
self.no_norm_on_lateral = no_norm_on_lateral
|
|
self.fp16_enabled = False
|
|
self.upsample_cfg = upsample_cfg.copy()
|
|
|
|
if end_level == -1:
|
|
self.backbone_end_level = self.num_ins
|
|
assert num_outs >= self.num_ins - start_level
|
|
else:
|
|
|
|
self.backbone_end_level = end_level
|
|
assert end_level <= len(in_channels)
|
|
assert num_outs == end_level - start_level
|
|
self.start_level = start_level
|
|
self.end_level = end_level
|
|
self.add_extra_convs = add_extra_convs
|
|
assert isinstance(add_extra_convs, (str, bool))
|
|
if isinstance(add_extra_convs, str):
|
|
|
|
assert add_extra_convs in ('on_input', 'on_lateral', 'on_output')
|
|
elif add_extra_convs:
|
|
if extra_convs_on_inputs:
|
|
|
|
|
|
self.add_extra_convs = 'on_input'
|
|
else:
|
|
self.add_extra_convs = 'on_output'
|
|
|
|
self.lateral_convs = nn.ModuleList()
|
|
self.fpn_convs = nn.ModuleList()
|
|
|
|
for i in range(self.start_level, self.backbone_end_level):
|
|
l_conv = ConvModule(
|
|
in_channels[i],
|
|
out_channels,
|
|
1,
|
|
conv_cfg=conv_cfg,
|
|
norm_cfg=norm_cfg if not self.no_norm_on_lateral else None,
|
|
act_cfg=act_cfg,
|
|
inplace=False)
|
|
fpn_conv = ConvModule(
|
|
out_channels,
|
|
out_channels,
|
|
3,
|
|
padding=1,
|
|
conv_cfg=conv_cfg,
|
|
norm_cfg=norm_cfg,
|
|
act_cfg=act_cfg,
|
|
inplace=False)
|
|
|
|
self.lateral_convs.append(l_conv)
|
|
self.fpn_convs.append(fpn_conv)
|
|
|
|
|
|
extra_levels = num_outs - self.backbone_end_level + self.start_level
|
|
if self.add_extra_convs and extra_levels >= 1:
|
|
for i in range(extra_levels):
|
|
if i == 0 and self.add_extra_convs == 'on_input':
|
|
in_channels = self.in_channels[self.backbone_end_level - 1]
|
|
else:
|
|
in_channels = out_channels
|
|
extra_fpn_conv = ConvModule(
|
|
in_channels,
|
|
out_channels,
|
|
3,
|
|
stride=2,
|
|
padding=1,
|
|
conv_cfg=conv_cfg,
|
|
norm_cfg=norm_cfg,
|
|
act_cfg=act_cfg,
|
|
inplace=False)
|
|
self.fpn_convs.append(extra_fpn_conv)
|
|
|
|
|
|
def init_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
xavier_init(m, distribution='uniform')
|
|
|
|
def forward(self, inputs):
|
|
assert len(inputs) == len(self.in_channels)
|
|
|
|
|
|
laterals = [
|
|
lateral_conv(inputs[i + self.start_level])
|
|
for i, lateral_conv in enumerate(self.lateral_convs)
|
|
]
|
|
|
|
|
|
used_backbone_levels = len(laterals)
|
|
for i in range(used_backbone_levels - 1, 0, -1):
|
|
|
|
|
|
if 'scale_factor' in self.upsample_cfg:
|
|
laterals[i - 1] += F.interpolate(laterals[i],
|
|
**self.upsample_cfg)
|
|
else:
|
|
prev_shape = laterals[i - 1].shape[2:]
|
|
laterals[i - 1] += F.interpolate(
|
|
laterals[i], size=prev_shape, **self.upsample_cfg)
|
|
|
|
|
|
|
|
outs = [
|
|
self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels)
|
|
]
|
|
|
|
if self.num_outs > len(outs):
|
|
|
|
|
|
if not self.add_extra_convs:
|
|
for i in range(self.num_outs - used_backbone_levels):
|
|
outs.append(F.max_pool2d(outs[-1], 1, stride=2))
|
|
|
|
else:
|
|
if self.add_extra_convs == 'on_input':
|
|
extra_source = inputs[self.backbone_end_level - 1]
|
|
elif self.add_extra_convs == 'on_lateral':
|
|
extra_source = laterals[-1]
|
|
elif self.add_extra_convs == 'on_output':
|
|
extra_source = outs[-1]
|
|
else:
|
|
raise NotImplementedError
|
|
outs.append(self.fpn_convs[used_backbone_levels](extra_source))
|
|
for i in range(used_backbone_levels + 1, self.num_outs):
|
|
if self.relu_before_extra_convs:
|
|
outs.append(self.fpn_convs[i](F.relu(outs[-1])))
|
|
else:
|
|
outs.append(self.fpn_convs[i](outs[-1]))
|
|
return tuple(outs)
|
|
|