|
Adding Models
|
|
####################################
|
|
|
|
This is a tutorial on adding new models using ``lavis.models`` module.
|
|
|
|
The LAVIS library includes a standard model module that builds the foundation for many major language-vision models such as `ALBEF <https:
|
|
`BLIP <https:
|
|
The ``lavis.models`` module is designed such that any new models can be added and integrated into the LAVIS library, with minimal steps to develop training and testing procedures.
|
|
In this tutorial, we will replicate the steps to add a GPT-style model specifically for `video-grounded dialogue tasks <https:
|
|
|
|
Base Model ``lavis.models.base_model``
|
|
**************************************************************
|
|
|
|
Note that any new model definition should inherit the base model class ``BaseModel``:
|
|
|
|
.. code-block:: python
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from lavis.common.utils import get_abs_path
|
|
|
|
class BaseModel(nn.Module):
|
|
"""Base class for models."""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward_features(self, *args, **kwargs):
|
|
"""Similar to *forward* but only return features."""
|
|
raise NotImplementedError
|
|
|
|
def load_from_pretrained(self, url_or_filename):
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
def _from_config(cls, cfg=None, model_type="base"):
|
|
if not cfg:
|
|
# useful when building model without a provided configuration file
|
|
cfg = OmegaConf.load(cls.default_config_path(model_type)).model
|
|
|
|
return cls.from_config(cfg)
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, model_type="base"):
|
|
"""
|
|
Build a pretrained model from the default configuration file, specified by model_type.
|
|
"""
|
|
return cls._from_config(cfg=None, model_type=model_type)
|
|
|
|
@property
|
|
def device(self):
|
|
return list(self.parameters())[0].device
|
|
|
|
@classmethod
|
|
def default_config_path(cls, model_type="base"):
|
|
assert (
|
|
model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
|
|
), "Unknown model type {}".format(model_type)
|
|
return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])
|
|
|
|
def before_evaluation(self, **kwargs):
|
|
pass
|
|
|
|
def show_n_params(self, return_str=True):
|
|
tot = 0
|
|
for p in self.parameters():
|
|
w = 1
|
|
for x in p.shape:
|
|
w *= x
|
|
tot += w
|
|
if return_str:
|
|
if tot >= 1e6:
|
|
return "{:.1f}M".format(tot / 1e6)
|
|
else:
|
|
return "{:.1f}K".format(tot / 1e3)
|
|
else:
|
|
return tot
|
|
|
|
|
|
In this base model, we already declare and standardize many common methods such as ``_from_config`` and ``_from_pretrained``.
|
|
Inheriting this base model class allows us to standardize operations of models across all model classes while still allowing customizations.
|
|
We advise users not to change the implementation of the base model class as this will affect all existing model subclasses.
|
|
|
|
GPT-style Video-grounded Dialogue Model ``lavis.models.gpt_models.gpt_dialogue``
|
|
********************************************************************************
|
|
|
|
In this step, we can define a new model class, e.g. under ``lavis.models.gpt_models.gpt_dialogue``, for GPT-based dialogue models designed specifically for video-grounded dialogues.
|
|
Note that we assume the model class inherits from the standard model super class ``GPT2LMHeadModel`` from the ``transformers`` `library <https:
|
|
We also enforce model integration to the LAVIS framework through the inheritance of the ``BaseModel`` from the LAVIS library, as the secondary super class.
|
|
|
|
.. code-block:: python
|
|
|
|
import torch
|
|
from lavis.common.registry import registry
|
|
from lavis.models.base_model import BaseModel
|
|
|
|
from transformers import GPT2Model, GPT2LMHeadModel
|
|
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import CrossEntropyLoss, MSELoss
|
|
|
|
@registry.register_model("gpt_dialogue")
|
|
class GPTDialogue(GPT2LMHeadModel, BaseModel):
|
|
...
|
|
|
|
Next, we can modify the architecture of the model during model initialization to fit the tasks of interest, i.e. video-grounded dialogues.
|
|
In this case, we want to add additional model parameters for a linear network to transform the video feature representations to the model dimension.
|
|
|
|
.. code-block:: python
|
|
|
|
class GPTDialogue(GPT2LMHeadModel, BaseModel):
|
|
|
|
def __init__(self, config, len_video_ft=4224):
|
|
|
|
super().__init__(config)
|
|
|
|
self.video_ff = nn.Linear(len_video_ft, config.n_embd)
|
|
|
|
# Model parallel
|
|
self.model_parallel = False
|
|
self.device_map = None
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
Note that for each new model class, we advise redefining the ``from_config`` method which is inherited from the ``BaseModel`` class.
|
|
As each model usually has its own unique configurations, redefining the method will ensure the model instances are created properly.
|
|
For instance, ``GPTDialogue`` requires an additional parameter of video feature length (``len_video_ft``) which should be part of the model initialization procedure.
|
|
Another additional parameter is the number of tokens/words (as we include additional special tokens in the vocabulary for dialogue tasks).
|
|
|
|
.. code-block:: python
|
|
|
|
class GPTDialogue(GPT2LMHeadModel, BaseModel):
|
|
...
|
|
@classmethod
|
|
def from_config(cls, cfg):
|
|
model = cls.from_pretrained('gpt2', len_video_ft=cfg['len_video_ft'])
|
|
model.resize_token_embeddings(cfg['len_tokenizer'])
|
|
return model
|
|
|
|
Other basic methods should also be defined explicitly in the new model class, including the ``forward`` function.
|
|
For instance, in GPT models for video-grounded dialogue tasks, we want the forward operation also includes the transformation and integration of video features before passing the representations to the Transformer layers.
|
|
|
|
.. code-block:: python
|
|
|
|
class GPTDialogue(GPT2LMHeadModel, BaseModel):
|
|
...
|
|
|
|
def forward(self, samples,
|
|
past_key_values=None,
|
|
position_ids=None,
|
|
head_mask=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None):
|
|
|
|
input_embs = self.transformer.wte(samples['input_ids'])
|
|
video_embs = self.video_ff(samples['video_fts'])
|
|
input_embs = torch.cat([video_embs, input_embs], dim=1)
|
|
|
|
transformer_outputs = self.transformer(
|
|
attention_mask=samples['attn_mask'],
|
|
token_type_ids=samples['token_type_ids'],
|
|
inputs_embeds=input_embs,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
lm_logits = self.lm_head(hidden_states)
|
|
...
|
|
|
|
Registering New Model ``lavis.models.__init__``
|
|
********************************************************************************
|
|
|
|
Any new model must be officially registered as part of the ``lavis.models`` module.
|
|
For instance, to add a model class for GPT-based dialogue models, we can modify the ``__init__.py`` as follows:
|
|
|
|
.. code-block:: python
|
|
|
|
from lavis.models.gpt_models.gpt_dialogue import GPTDialogue
|
|
|
|
__all__ = [
|
|
...
|
|
"GPTDialogue"
|
|
]
|
|
|
|
Assigning Model
|
|
********************************************************************************
|
|
|
|
From the above example of a model class, note that we define a ``from_config method`` for the new model class.
|
|
This method will process a configuration file and pass specific parameters to initialize the model classes properly.
|
|
To do this, we can assign/ associate the correct registry of model classes in a configuration file.
|
|
For instance, the following should be specified in a configuration file e.g. ``dialogue_avsd_ft.yaml``:
|
|
|
|
.. code-block:: yaml
|
|
|
|
model:
|
|
arch: gpt_dialogue # name of the model
|
|
model_type: base
|
|
|
|
|
|
Subsequently, any processes (e.g. training) should load this configuration file to assign the correct model.
|
|
|
|
.. code-block:: sh
|
|
|
|
python train.py --cfg-path dialogue_avsd_ft.yaml
|
|
|
|
Note that to simplify the model configuration, we only enable two main parameters here: ``arch`` and ``model_type``. ``arch`` refers to the model class registry, and ``model_type`` is the corresponding model type under this model family.
|
|
For instance, with ``gpt_dialogue``, we have a model ``base`` which has its own configuration in a separate configuration file e.g. ``gpt_dialogue_base.yaml``:
|
|
|
|
.. code-block:: yaml
|
|
|
|
model:
|
|
arch: gpt_dialogue
|
|
len_tokenizer: 50264 # 50257 tokens from gpt2 default tokenizer + additional special tokens
|
|
len_video_ft: 4224 # i3d_rgb: 2048 i3d_flow: 2048 vggish: 128
|
|
|
|
We can pass load this configuration and pass the parameters to the above ``from_config`` method to initialize the model accordingly.
|
|
We advise the users to maintain a dictionary that contains default paths to model configurations, in the model class definition.
|
|
By default, the LAVIS framework will search for configurations from each model class defined as ``model.PRETRAINED_MODEL_CONFIG_DICT``.
|
|
|
|
.. code-block:: python
|
|
|
|
class GPTDialogue(GPT2LMHeadModel, BaseModel):
|
|
PRETRAINED_MODEL_CONFIG_DICT = {
|
|
"base": "configs/models/gpt_dialogue_base.yaml"
|
|
}
|
|
...
|
|
|