|
"""
|
|
Copyright (c) 2022, salesforce.com, inc.
|
|
All rights reserved.
|
|
SPDX-License-Identifier: BSD-3-Clause
|
|
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
"""
|
|
|
|
import logging
|
|
import json
|
|
import os
|
|
import torch
|
|
import torch.distributed as dist
|
|
from itertools import chain
|
|
|
|
import lavis.common.dist_utils as dist_utils
|
|
from lavis.common.dist_utils import get_rank, get_world_size, is_main_process
|
|
from lavis.common.registry import registry
|
|
from lavis.common.vqa_tools.vqa_eval import VQAEval as VQATool
|
|
from lavis.tasks.vqa import VQATask
|
|
|
|
|
|
@registry.register_task("vqa_reading_comprehension")
|
|
class VQARCTask(VQATask):
|
|
def __init__(
|
|
self,
|
|
num_beams,
|
|
max_len,
|
|
min_len,
|
|
evaluate,
|
|
num_ans_candidates,
|
|
inference_method="rank",
|
|
**kwargs,
|
|
):
|
|
super().__init__(num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method)
|
|
|
|
self.config = kwargs.get('config')
|
|
|
|
@classmethod
|
|
def setup_task(cls, cfg):
|
|
run_cfg = cfg.run_cfg
|
|
|
|
num_beams = run_cfg.get("num_beams", 3)
|
|
max_len = run_cfg.get("max_len", 10)
|
|
min_len = run_cfg.get("min_len", 1)
|
|
|
|
evaluate = run_cfg.get("evaluate", False)
|
|
|
|
inference_method = run_cfg.get("inference_method", "rank")
|
|
num_ans_candidates = run_cfg.get("num_ans_candidates", 128)
|
|
|
|
return cls(
|
|
num_beams=num_beams,
|
|
max_len=max_len,
|
|
min_len=min_len,
|
|
evaluate=evaluate,
|
|
num_ans_candidates=num_ans_candidates,
|
|
inference_method=inference_method,
|
|
config=run_cfg,
|
|
)
|
|
|
|
def valid_step(self, model, samples):
|
|
answers, captions, gradcams = model.predict_answers(
|
|
samples=samples,
|
|
inference_method=self.inference_method,
|
|
num_beams=self.num_beams,
|
|
max_len=self.max_len,
|
|
min_len=self.min_len,
|
|
internal_bsz_fid=self.config['internal_bsz_fid'],
|
|
num_captions=self.config['num_captions'],
|
|
num_captions_fid=self.config['num_captions_fid'],
|
|
cap_max_length=self.config['cap_max_length'],
|
|
cap_min_length=self.config['cap_min_length'],
|
|
top_k=self.config['top_k'],
|
|
top_p=self.config['top_p'],
|
|
repetition_penalty=self.config['repetition_penalty'],
|
|
num_patches=self.config['num_patches'],
|
|
block_num=self.config['block_num'],
|
|
)
|
|
|
|
pred_qa_pairs = []
|
|
sample_captions = []
|
|
sample_gradcams = []
|
|
|
|
question_id = samples["question_id"]
|
|
for answer, caption, gradcam, ques_id in zip(answers, captions, gradcams, question_id):
|
|
ques_id = int(ques_id.item())
|
|
pred_qa_pairs.append({"question_id": ques_id, "answer": answer})
|
|
sample_captions.append({"question_id": ques_id, "caption": caption})
|
|
sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam})
|
|
|
|
return [sample_gradcams, sample_captions, pred_qa_pairs]
|
|
|
|
def after_evaluation(self, val_result, split_name, **kwargs):
|
|
result_ = list(chain(*val_result[0::3]))
|
|
result_file = self.save_gradcam(
|
|
result_,
|
|
result_dir=registry.get_path("result_dir"),
|
|
filename=f"{split_name}_gradcam_result",
|
|
remove_duplicate="question_id",
|
|
)
|
|
|
|
result_ = list(chain(*val_result[1::3]))
|
|
result_file = self.save_result(
|
|
result_,
|
|
result_dir=registry.get_path("result_dir"),
|
|
filename=f"{split_name}_caption_result",
|
|
remove_duplicate="question_id",
|
|
)
|
|
|
|
result_ = list(chain(*val_result[2::3]))
|
|
result_file = self.save_result(
|
|
result_,
|
|
result_dir=registry.get_path("result_dir"),
|
|
filename=f"{split_name}_vqa_result",
|
|
remove_duplicate="question_id",
|
|
)
|
|
|
|
metrics = self._report_metrics(result_file=result_file, split=split_name)
|
|
|
|
return metrics
|
|
|
|
def save_gradcam(self, result, result_dir, filename, remove_duplicate=""):
|
|
result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, get_rank()))
|
|
final_result_file = os.path.join(result_dir, '%s.pth' % filename)
|
|
torch.save({'result': result}, result_file)
|
|
|
|
dist.barrier()
|
|
|
|
if is_main_process():
|
|
logging.warning("rank %d starts merging results." % get_rank())
|
|
|
|
result = []
|
|
|
|
for rank in range(get_world_size()):
|
|
result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, rank))
|
|
res_ckpt = torch.load(result_file, map_location='cpu')
|
|
res = res_ckpt['result']
|
|
|
|
result += res
|
|
|
|
if remove_duplicate:
|
|
result_new = []
|
|
id_list = []
|
|
for res in result:
|
|
if res[remove_duplicate] not in id_list:
|
|
id_list.append(res[remove_duplicate])
|
|
result_new.append(res)
|
|
result = result_new
|
|
|
|
torch.save({'result': result}, final_result_file)
|
|
print("result file saved to %s" % final_result_file)
|
|
|
|
return final_result_file
|
|
|
|
|
|
@registry.register_task("gqa_reading_comprehension")
|
|
class GQARCTask(VQARCTask):
|
|
def valid_step(self, model, samples):
|
|
answers, captions, gradcams = model.predict_answers(
|
|
samples=samples,
|
|
inference_method=self.inference_method,
|
|
num_beams=self.num_beams,
|
|
max_len=self.max_len,
|
|
min_len=self.min_len,
|
|
internal_bsz_fid=self.config['internal_bsz_fid'],
|
|
num_captions=self.config['num_captions'],
|
|
num_captions_fid=self.config['num_captions_fid'],
|
|
cap_max_length=self.config['cap_max_length'],
|
|
cap_min_length=self.config['cap_min_length'],
|
|
top_k=self.config['top_k'],
|
|
top_p=self.config['top_p'],
|
|
repetition_penalty=self.config['repetition_penalty'],
|
|
num_patches=self.config['num_patches'],
|
|
block_num=self.config['block_num'],
|
|
)
|
|
|
|
pred_qa_pairs = []
|
|
sample_captions = []
|
|
sample_gradcams = []
|
|
|
|
question_id = samples["question_id"]
|
|
gt_answers = samples["answer"]
|
|
|
|
for pred_answer, caption, gradcam, ques_id, gt_answer in zip(answers, captions, gradcams, question_id, gt_answers):
|
|
ques_id = int(ques_id.item())
|
|
pred_qa_pairs.append({"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer})
|
|
sample_captions.append({"question_id": ques_id, "caption": caption})
|
|
sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam})
|
|
|
|
return [sample_gradcams, sample_captions, pred_qa_pairs]
|
|
|
|
@dist_utils.main_process
|
|
def _report_metrics(self, result_file, split):
|
|
"""
|
|
TODO: add other evaluation metrics for GQA
|
|
"""
|
|
|
|
results = json.load(open(result_file, "r"))
|
|
acc = []
|
|
vqa_tool = VQATool()
|
|
|
|
for res in results:
|
|
if res["gt_ans"] is None:
|
|
|
|
self._save_result_leaderboard(results)
|
|
return
|
|
|
|
gt_ans = res["gt_ans"]
|
|
pred = res["pred_ans"]
|
|
|
|
if self.inference_method == "generate":
|
|
pred = vqa_tool.processPunctuation(pred)
|
|
pred = vqa_tool.processDigitArticle(pred)
|
|
|
|
vqa_acc = 1 if pred == gt_ans else 0
|
|
|
|
acc.append(vqa_acc)
|
|
|
|
accuracy = sum(acc) / len(acc) * 100
|
|
metrics = {"agg_metrics": accuracy, "acc": accuracy}
|
|
|
|
with open(
|
|
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a"
|
|
) as f:
|
|
f.write(json.dumps(metrics) + "\n")
|
|
|
|
logging.info(metrics)
|
|
|
|
return metrics
|
|
|
|
@dist_utils.main_process
|
|
def _save_result_leaderboard(self, results):
|
|
"""
|
|
Saving the results in the format required for leaderboard evaluation.
|
|
"""
|
|
result_leaderboard = []
|
|
for res in results:
|
|
result_leaderboard.append({
|
|
"questionId": str(res['question_id']),
|
|
"prediction": str(res["pred_ans"]),
|
|
})
|
|
|
|
result_file = registry.get_path("result_dir") + "_leaderboard.json"
|
|
|
|
with open(result_file, "w") as f:
|
|
json.dump(result_leaderboard, f)
|
|
|
|
logging.info(f"Saved results for leaderboard evaluation at {result_file}")
|
|
|