FAPM / docs /tutorial.evaluation.rst
wenkai's picture
Upload 32 files
a60ca6c verified
raw
history blame
1.33 kB
Evaluating Pre-trained Models on Task Datasets
###############################################
LAVIS provides pre-trained and finetuned model for off-the-shelf evaluation on task dataset.
Let's now see an example to evaluate BLIP model on the captioning task, using MSCOCO dataset.
.. _prep coco:
Preparing Datasets
******************
First, let's download the dataset. LAVIS provides `automatic downloading scripts` to help prepare
most of the public dataset, to download MSCOCO dataset, simply run
.. code-block:: bash
cd lavis/datasets/download_scripts && python download_coco.py
This will put the downloaded dataset at a default cache location ``cache`` used by LAVIS.
If you want to use a different cache location, you can specify it by updating ``cache_root`` in ``lavis/configs/default.yaml``.
If you have a local copy of the dataset, it is recommended to create a symlink from the cache location to the local copy, e.g.
.. code-block:: bash
ln -s /path/to/local/coco cache/coco
Evaluating pre-trained models
******************************
To evaluate pre-trained model, simply run
.. code-block:: bash
bash run_scripts/blip/eval/eval_coco_cap.sh
Or to evaluate a large model:
.. code-block:: bash
bash run_scripts/blip/eval/eval_coco_cap_large.sh