ai-venkat-r
commited on
adding & rename the files (#11)
Browse files- tech: build LSTM model (02b8f3f956e0d1f835fdc93eb3991d28d56f2652)
- .gitattributes +1 -0
- .gitignore +4 -1
- About.md +64 -0
- Dataset/transaction_data.csv +1 -1
- LSTM_model.py +62 -0
- bert_model.py +0 -134
- data_preprocessing.py +50 -84
- prediction.py +57 -0
- requirements.txt +0 -4
- setup.md +52 -58
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
transactify_venv
|
|
|
|
|
|
|
|
1 |
+
transactify_venv
|
2 |
+
tokenizer.joblib
|
3 |
+
label_encoder.joblib
|
4 |
+
transactify.h5
|
About.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Abstract for Transactify......
|
2 |
+
|
3 |
+
Transactify is an LSTM-based model designed to predict the category of online payment transactions from their descriptions.
|
4 |
+
By analyzing textual inputs like "Live concert stream on YouTube" or "Coffee at Starbucks," it classifies transactions into categories such as "Movies & Entertainment" or "Food & Dining."
|
5 |
+
This model helps users track and organize their spending across various sectors, providing better financial insights and budgeting.
|
6 |
+
Transactify is trained on real-world transaction data for improved accuracy and generalization.
|
7 |
+
|
8 |
+
Table of contents....
|
9 |
+
|
10 |
+
1.Data Collection:
|
11 |
+
The dataset consists of 5,000 transaction records generated using ChatGPT, each containing a transaction description and its corresponding category.
|
12 |
+
Example entries include descriptions like "Live concert stream on YouTube" (Movies & Entertainment) and "Coffee at Starbucks" (Food & Dining).
|
13 |
+
These records cover various spending categories such as Lifestyle, Movies & Entertainment, Food & Dining, and others.
|
14 |
+
|
15 |
+
|
16 |
+
2.Data Preprocessing:
|
17 |
+
The preprocessing step involves several natural language processing (NLP) tasks to clean and prepare the text data for model training.
|
18 |
+
These include:
|
19 |
+
Lowercasing all text.
|
20 |
+
Removing digits and punctuation using regular expressions (regex).
|
21 |
+
Tokenizing the cleaned text to convert it into a sequence of tokens.
|
22 |
+
Applying text_to_sequences to transform the tokenized words into numerical sequences.
|
23 |
+
Using pad_sequences to ensure all sequences have the same length for input into the LSTM model.
|
24 |
+
Label encoding the target categories to convert them into numerical labels.
|
25 |
+
After preprocessing, the data is split into training and testing sets to build and validate the model.
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
3.Model Building:
|
30 |
+
Embedding Layer: Converts tokenized transaction descriptions into dense vectors, capturing word semantics and relationships.
|
31 |
+
|
32 |
+
LSTM Layer: Learns sequential patterns from the embedded text, helping the model understand the context and relationships between words over time.
|
33 |
+
|
34 |
+
Dropout Layer: Introduces regularization by randomly turning off neurons during training, reducing overfitting and improving the model's generalization.
|
35 |
+
|
36 |
+
Dense Layer with Softmax Activation: Outputs a probability distribution across categories, allowing the model to predict the correct category for each transaction description.
|
37 |
+
|
38 |
+
Model Compilation: Compiled with the Adam optimizer for efficient learning, sparse categorical cross-entropy loss for multi-class classification, and accuracy as the evaluation metric.
|
39 |
+
|
40 |
+
Model Training: The model is trained for 50 epochs with a batch size of 8, using a validation set to monitor performance and adjust during training.
|
41 |
+
|
42 |
+
Saving the Model and Preprocessing Objects:
|
43 |
+
|
44 |
+
The trained model is saved as transactify.h5 for future use.
|
45 |
+
The tokenizer and label encoder used during preprocessing are saved using joblib as tokenizer.joblib and label_encoder.joblib, respectively,
|
46 |
+
ensuring they can be reused for consistent tokenization and label encoding when making predictions on new data.
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
4.Prediction:
|
51 |
+
Once trained, the model is used to predict the category of new transaction descriptions.
|
52 |
+
The output provides the category label, enabling users to classify their spending based on transaction descriptions.
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
5.Conclusion:
|
57 |
+
The Transactify model effectively categorizes transaction descriptions using LSTM networks.
|
58 |
+
However, to improve the accuracy and reliability of predictions, a larger and more diverse dataset is necessary.
|
59 |
+
Expanding the dataset will help the model generalize better across various spending behaviors and conditions.
|
60 |
+
This enhancement will lead to more precise predictions, enabling users to gain deeper insights into their spending patterns.
|
61 |
+
Future work should focus on collecting additional data to refine the model's performance and applicability in real-world scenarios.
|
62 |
+
|
63 |
+
|
64 |
+
![Excepted Output:](result.gif)
|
Dataset/transaction_data.csv
CHANGED
@@ -4998,4 +4998,4 @@ Google Play Music,Online Payment
|
|
4998 |
Yoga class at HealthFit Studio,Lifestyle
|
4999 |
Doctor's appointment payment,Health & Wellness
|
5000 |
New sneakers from Nike,Lifestyle
|
5001 |
-
Breakfast at Denny's,Food & Dining
|
|
|
4998 |
Yoga class at HealthFit Studio,Lifestyle
|
4999 |
Doctor's appointment payment,Health & Wellness
|
5000 |
New sneakers from Nike,Lifestyle
|
5001 |
+
Breakfast at Denny's,Food & Dining
|
LSTM_model.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LSTM_model.py
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow.keras.models import Sequential
|
4 |
+
from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout
|
5 |
+
from data_preprocessing import preprocess_data, split_data
|
6 |
+
import joblib # To save the tokenizer and label encoder
|
7 |
+
|
8 |
+
# Define the LSTM model
|
9 |
+
def build_lstm_model(vocab_size, embedding_dim=64, max_len=10, lstm_units=128, dropout_rate=0.2, output_units=6):
|
10 |
+
model = Sequential()
|
11 |
+
model.add(Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=max_len))
|
12 |
+
model.add(LSTM(units=lstm_units, return_sequences=False))
|
13 |
+
model.add(Dropout(dropout_rate))
|
14 |
+
model.add(Dense(units=output_units, activation='softmax'))
|
15 |
+
|
16 |
+
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
17 |
+
|
18 |
+
return model
|
19 |
+
|
20 |
+
# Main function to execute the training process
|
21 |
+
def main():
|
22 |
+
# Path to your data file
|
23 |
+
data_path = r"E:\transactify\transactify\Dataset\transaction_data.csv"
|
24 |
+
|
25 |
+
# Preprocess the data
|
26 |
+
sequences, labels, tokenizer, label_encoder = preprocess_data(data_path)
|
27 |
+
|
28 |
+
# Check if preprocessing succeeded
|
29 |
+
if sequences is not None:
|
30 |
+
print("Data preprocessing successful!")
|
31 |
+
|
32 |
+
# Split the data into training and testing sets
|
33 |
+
X_train, X_test, y_train, y_test = split_data(sequences, labels)
|
34 |
+
print(f"Training data shape: {X_train.shape}, Training labels shape: {y_train.shape}")
|
35 |
+
print(f"Testing data shape: {X_test.shape}, Testing labels shape: {y_test.shape}")
|
36 |
+
|
37 |
+
# Build the LSTM model
|
38 |
+
vocab_size = tokenizer.num_words + 1 # +1 for padding token
|
39 |
+
model = build_lstm_model(vocab_size, max_len=10, output_units=len(label_encoder.classes_))
|
40 |
+
|
41 |
+
# Train the model
|
42 |
+
model.fit(X_train, y_train, epochs=50, batch_size=8, validation_data=(X_test, y_test))
|
43 |
+
|
44 |
+
# Evaluate the model
|
45 |
+
loss, accuracy = model.evaluate(X_test, y_test)
|
46 |
+
print(f"Test Loss: {loss:.4f}, Test Accuracy: {accuracy:.4f}")
|
47 |
+
|
48 |
+
# Save the model
|
49 |
+
model.save('transactify.h5')
|
50 |
+
print("Model saved as 'transactify.h5'")
|
51 |
+
|
52 |
+
# Save the tokenizer and label encoder
|
53 |
+
joblib.dump(tokenizer, 'tokenizer.joblib')
|
54 |
+
joblib.dump(label_encoder, 'label_encoder.joblib')
|
55 |
+
print("Tokenizer and LabelEncoder saved as 'tokenizer.joblib' and 'label_encoder.joblib'")
|
56 |
+
|
57 |
+
else:
|
58 |
+
print("Data preprocessing failed.")
|
59 |
+
|
60 |
+
# Execute the main function
|
61 |
+
if __name__ == "__main__":
|
62 |
+
main()
|
bert_model.py
DELETED
@@ -1,134 +0,0 @@
|
|
1 |
-
# Import Required Libraries
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from torch.utils.data import DataLoader, TensorDataset
|
5 |
-
from transformers import BertModel, AdamW
|
6 |
-
from sklearn.metrics import accuracy_score
|
7 |
-
import numpy as np
|
8 |
-
|
9 |
-
# Import functions from the preprocessing module
|
10 |
-
from transactify.data_preprocessing import preprocessing_data, split_data, read_data
|
11 |
-
|
12 |
-
# Define a BERT-based classification model
|
13 |
-
class BertClassifier(nn.Module):
|
14 |
-
def __init__(self, num_labels, dropout_rate=0.3):
|
15 |
-
super(BertClassifier, self).__init__()
|
16 |
-
self.bert = BertModel.from_pretrained("bert-base-uncased")
|
17 |
-
self.dropout = nn.Dropout(dropout_rate)
|
18 |
-
self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
|
19 |
-
|
20 |
-
def forward(self, input_ids, attention_mask):
|
21 |
-
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
22 |
-
pooled_output = outputs[1] # Pooler output (CLS token)
|
23 |
-
output = self.dropout(pooled_output)
|
24 |
-
logits = self.classifier(output)
|
25 |
-
return logits
|
26 |
-
|
27 |
-
# Training the model
|
28 |
-
# Training the model
|
29 |
-
def train_model(model, train_dataloader, val_dataloader, device, epochs=3, lr=2e-5):
|
30 |
-
optimizer = AdamW(model.parameters(), lr=lr)
|
31 |
-
loss_fn = nn.CrossEntropyLoss()
|
32 |
-
|
33 |
-
for epoch in range(epochs):
|
34 |
-
model.train()
|
35 |
-
total_train_loss = 0
|
36 |
-
for step, batch in enumerate(train_dataloader):
|
37 |
-
b_input_ids, b_input_mask, b_labels = batch
|
38 |
-
|
39 |
-
b_input_ids = b_input_ids.to(device)
|
40 |
-
b_input_mask = b_input_mask.to(device)
|
41 |
-
b_labels = b_labels.to(device).long() # Ensure labels are LongTensor
|
42 |
-
|
43 |
-
model.zero_grad()
|
44 |
-
outputs = model(b_input_ids, b_input_mask)
|
45 |
-
|
46 |
-
loss = loss_fn(outputs, b_labels)
|
47 |
-
total_train_loss += loss.item()
|
48 |
-
loss.backward()
|
49 |
-
optimizer.step()
|
50 |
-
|
51 |
-
avg_train_loss = total_train_loss / len(train_dataloader)
|
52 |
-
print(f"Epoch {epoch+1}, Training Loss: {avg_train_loss}")
|
53 |
-
|
54 |
-
model.eval()
|
55 |
-
total_val_accuracy = 0
|
56 |
-
total_val_loss = 0
|
57 |
-
|
58 |
-
with torch.no_grad():
|
59 |
-
for batch in val_dataloader:
|
60 |
-
b_input_ids, b_input_mask, b_labels = batch
|
61 |
-
b_input_ids = b_input_ids.to(device)
|
62 |
-
b_input_mask = b_input_mask.to(device)
|
63 |
-
b_labels = b_labels.to(device)
|
64 |
-
|
65 |
-
outputs = model(b_input_ids, b_input_mask)
|
66 |
-
loss = loss_fn(outputs, b_labels)
|
67 |
-
total_val_loss += loss.item()
|
68 |
-
|
69 |
-
preds = torch.argmax(outputs, dim=1)
|
70 |
-
total_val_accuracy += (preds == b_labels).sum().item()
|
71 |
-
|
72 |
-
avg_val_accuracy = total_val_accuracy / len(val_dataloader.dataset)
|
73 |
-
avg_val_loss = total_val_loss / len(val_dataloader)
|
74 |
-
print(f"Validation Loss: {avg_val_loss}, Validation Accuracy: {avg_val_accuracy}")
|
75 |
-
|
76 |
-
# Testing the model
|
77 |
-
def test_model(model, test_dataloader, device):
|
78 |
-
model.eval()
|
79 |
-
all_preds = []
|
80 |
-
all_labels = []
|
81 |
-
with torch.no_grad():
|
82 |
-
for batch in test_dataloader:
|
83 |
-
b_input_ids, b_input_mask, b_labels = batch
|
84 |
-
b_input_ids = b_input_ids.to(device)
|
85 |
-
b_input_mask = b_input_mask.to(device)
|
86 |
-
b_labels = b_labels.to(device)
|
87 |
-
|
88 |
-
outputs = model(b_input_ids, b_input_mask)
|
89 |
-
preds = torch.argmax(outputs, dim=1)
|
90 |
-
|
91 |
-
all_preds.append(preds.cpu().numpy())
|
92 |
-
all_labels.append(b_labels.cpu().numpy())
|
93 |
-
|
94 |
-
all_preds = np.concatenate(all_preds)
|
95 |
-
all_labels = np.concatenate(all_labels)
|
96 |
-
accuracy = accuracy_score(all_labels, all_preds)
|
97 |
-
print(f"Test Accuracy: {accuracy}")
|
98 |
-
|
99 |
-
# Main function to train, validate, and test the model
|
100 |
-
def main(data_path, epochs=3, batch_size=16):
|
101 |
-
# Read and preprocess data
|
102 |
-
data = read_data(data_path)
|
103 |
-
if data is None:
|
104 |
-
return
|
105 |
-
|
106 |
-
input_ids, attention_masks, labels, labelencoder = preprocessing_data(data)
|
107 |
-
X_train_ids, X_test_ids, X_train_masks, X_test_masks, y_train, y_test = split_data(input_ids, attention_masks, labels)
|
108 |
-
|
109 |
-
# Determine the number of labels
|
110 |
-
num_labels = len(labelencoder.classes_)
|
111 |
-
|
112 |
-
# Create the model
|
113 |
-
model = BertClassifier(num_labels)
|
114 |
-
|
115 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
116 |
-
model.to(device)
|
117 |
-
|
118 |
-
# Create dataloaders
|
119 |
-
train_dataset = TensorDataset(X_train_ids, X_train_masks, y_train)
|
120 |
-
train_dataloader = DataLoader(train_dataset, batch_size=batch_size)
|
121 |
-
|
122 |
-
val_dataset = TensorDataset(X_test_ids, X_test_masks, y_test)
|
123 |
-
val_dataloader = DataLoader(val_dataset, batch_size=batch_size)
|
124 |
-
|
125 |
-
# Train the model
|
126 |
-
train_model(model, train_dataloader, val_dataloader, device, epochs=epochs)
|
127 |
-
|
128 |
-
# Test the model
|
129 |
-
test_dataloader = DataLoader(val_dataset, batch_size=batch_size)
|
130 |
-
test_model(model, test_dataloader, device)
|
131 |
-
|
132 |
-
if __name__ == "__main__":
|
133 |
-
data_path = r"E:\transactify\transactify\Dataset\transaction_data.csv"
|
134 |
-
main(data_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_preprocessing.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
-
#
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
|
5 |
-
import torch
|
6 |
-
from transformers import BertTokenizer
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
from sklearn.model_selection import train_test_split
|
9 |
-
import
|
|
|
10 |
|
11 |
# Read the data
|
12 |
def read_data(path):
|
@@ -23,95 +22,62 @@ def read_data(path):
|
|
23 |
print(f"An error occurred: {e}")
|
24 |
return None
|
25 |
|
26 |
-
# Path to your data file
|
27 |
-
data_path = r"E:\transactify\transactify\Dataset\transaction_data.csv"
|
28 |
-
|
29 |
-
# Read the data and check if it was loaded successfully
|
30 |
-
data = read_data(data_path)
|
31 |
-
if data is not None:
|
32 |
-
print("Data loaded successfully:")
|
33 |
-
print(data.head(15))
|
34 |
-
else:
|
35 |
-
print("Data loading failed. Exiting...")
|
36 |
-
exit()
|
37 |
-
|
38 |
# Cleaning the text
|
39 |
def clean_text(text):
|
40 |
-
text = text.lower() #
|
41 |
-
text = re.sub(r"\d+", " ", text) #
|
42 |
-
text = re.sub(r"[^\w\s]", " ", text) #
|
43 |
text = text.strip() # Remove extra spaces
|
44 |
return text
|
45 |
|
46 |
-
#
|
47 |
-
def
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
|
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
# Debugging print statements
|
61 |
-
# print(f"Original Description: {description}")
|
62 |
-
# print(f"Cleaned Text: {cleaned_text}")
|
63 |
-
|
64 |
-
# Only tokenize if the cleaned text is not empty
|
65 |
-
if cleaned_text:
|
66 |
-
encoded_dict = tokenizer.encode_plus(
|
67 |
-
cleaned_text,
|
68 |
-
add_special_tokens=True, # Add special tokens for BERT
|
69 |
-
max_length=max_length,
|
70 |
-
pad_to_max_length=True,
|
71 |
-
return_attention_mask=True,
|
72 |
-
return_tensors="pt",
|
73 |
-
truncation=True
|
74 |
-
)
|
75 |
-
|
76 |
-
input_ids.append(encoded_dict['input_ids']) # Append input IDs
|
77 |
-
attention_masks.append(encoded_dict['attention_mask']) # Append attention masks
|
78 |
-
else:
|
79 |
-
print("Cleaned text is empty, skipping...")
|
80 |
-
|
81 |
-
# Debugging output to check sizes
|
82 |
-
print(f"Total input_ids collected: {len(input_ids)}")
|
83 |
-
print(f"Total attention_masks collected: {len(attention_masks)}")
|
84 |
|
85 |
-
|
86 |
-
raise ValueError("No input_ids were collected. Check the cleaning process.")
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
# Encoding the labels
|
93 |
-
labelencoder = LabelEncoder()
|
94 |
-
labels = labelencoder.fit_transform(df["Category"])
|
95 |
-
labels = torch.tensor(labels, dtype=torch.long) # Convert labels to LongTensor
|
96 |
-
|
97 |
-
return input_ids, attention_masks, labels, labelencoder
|
98 |
|
99 |
-
#
|
100 |
-
def
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
attention_masks, test_size=test_size, random_state=random_state
|
107 |
-
)
|
108 |
-
|
109 |
-
return X_train_ids, X_test_ids, X_train_masks, X_test_masks, y_train, y_test
|
110 |
|
111 |
-
#
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
#
|
116 |
-
|
117 |
-
|
|
|
1 |
+
# data_preprocessing.py
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
+
import re
|
|
|
|
|
5 |
from sklearn.preprocessing import LabelEncoder
|
6 |
from sklearn.model_selection import train_test_split
|
7 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
8 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
9 |
|
10 |
# Read the data
|
11 |
def read_data(path):
|
|
|
22 |
print(f"An error occurred: {e}")
|
23 |
return None
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Cleaning the text
|
26 |
def clean_text(text):
|
27 |
+
text = text.lower() # Convert uppercase to lowercase
|
28 |
+
text = re.sub(r"\d+", " ", text) # Remove digits
|
29 |
+
text = re.sub(r"[^\w\s]", " ", text) # Remove punctuations
|
30 |
text = text.strip() # Remove extra spaces
|
31 |
return text
|
32 |
|
33 |
+
# Main preprocessing function
|
34 |
+
def preprocess_data(file_path, max_len=10, vocab_size=250):
|
35 |
+
# Read the data
|
36 |
+
df = read_data(file_path)
|
37 |
+
if df is None:
|
38 |
+
print("Data loading failed.")
|
39 |
+
return None, None, None, None
|
40 |
+
|
41 |
+
# Clean the text
|
42 |
+
df['Transaction Description'] = df['Transaction Description'].apply(clean_text)
|
43 |
|
44 |
+
# Initialize the tokenizer
|
45 |
+
tokenizer = Tokenizer(num_words=vocab_size, oov_token="<OOV>")
|
46 |
+
tokenizer.fit_on_texts(df['Transaction Description'])
|
47 |
|
48 |
+
# Convert texts to sequences and pad them
|
49 |
+
sequences = tokenizer.texts_to_sequences(df['Transaction Description'])
|
50 |
+
padded_sequences = pad_sequences(sequences, maxlen=max_len, padding='post', truncating='post')
|
51 |
|
52 |
+
# Initialize LabelEncoder and encode the labels
|
53 |
+
label_encoder = LabelEncoder()
|
54 |
+
labels = label_encoder.fit_transform(df['Category'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
return padded_sequences, labels, tokenizer, label_encoder
|
|
|
57 |
|
58 |
+
# Train-test split function
|
59 |
+
def split_data(sequences, labels, test_size=0.2, random_state=42):
|
60 |
+
X_train, X_test, y_train, y_test = train_test_split(sequences, labels, test_size=test_size, random_state=random_state)
|
61 |
+
return X_train, X_test, y_train, y_test
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Main function to execute preprocessing
|
64 |
+
def main():
|
65 |
+
# Path to your data file
|
66 |
+
data_path = r"E:\transactify\transactify\Dataset\transaction_data.csv"
|
67 |
+
|
68 |
+
# Preprocess the data
|
69 |
+
sequences, labels, tokenizer, label_encoder = preprocess_data(data_path)
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# Check if preprocessing succeeded
|
72 |
+
if sequences is not None:
|
73 |
+
print("Data preprocessing successful!")
|
74 |
+
# Split the data into training and testing sets
|
75 |
+
X_train, X_test, y_train, y_test = split_data(sequences, labels)
|
76 |
+
print(f"Training data shape: {X_train.shape}, Training labels shape: {y_train.shape}")
|
77 |
+
print(f"Testing data shape: {X_test.shape}, Testing labels shape: {y_test.shape}")
|
78 |
+
else:
|
79 |
+
print("Data preprocessing failed.")
|
80 |
|
81 |
+
# Execute the main function
|
82 |
+
if __name__ == "__main__":
|
83 |
+
main()
|
prediction.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# prediction.py
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
6 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
7 |
+
import joblib
|
8 |
+
import re
|
9 |
+
|
10 |
+
# Function to clean the input text
|
11 |
+
def clean_text(text):
|
12 |
+
text = text.lower()
|
13 |
+
text = re.sub(r"\d+", " ", text)
|
14 |
+
text = re.sub(r"[^\w\s]", " ", text)
|
15 |
+
text = text.strip()
|
16 |
+
return text
|
17 |
+
|
18 |
+
# Load the model, tokenizer, and label encoder
|
19 |
+
def load_resources(model_path, tokenizer_path, label_encoder_path):
|
20 |
+
model = load_model(model_path)
|
21 |
+
tokenizer = joblib.load(tokenizer_path)
|
22 |
+
label_encoder = joblib.load(label_encoder_path)
|
23 |
+
return model, tokenizer, label_encoder
|
24 |
+
|
25 |
+
# Function to make predictions
|
26 |
+
def predict(model, tokenizer, label_encoder, input_text, max_len=50):
|
27 |
+
cleaned_text = clean_text(input_text)
|
28 |
+
sequence = tokenizer.texts_to_sequences([cleaned_text])
|
29 |
+
padded_sequence = pad_sequences(sequence, maxlen=max_len, padding='post', truncating='post')
|
30 |
+
|
31 |
+
# Make prediction
|
32 |
+
prediction = model.predict(padded_sequence)
|
33 |
+
predicted_class = np.argmax(prediction, axis=1)
|
34 |
+
|
35 |
+
# Decode the label
|
36 |
+
predicted_label = label_encoder.inverse_transform(predicted_class)
|
37 |
+
|
38 |
+
return predicted_label[0]
|
39 |
+
|
40 |
+
# Main function for running predictions
|
41 |
+
def main():
|
42 |
+
# Paths to your resources
|
43 |
+
model_path = 'transactify.h5' # Update with the correct path if needed
|
44 |
+
tokenizer_path = 'tokenizer.joblib' # Update with the correct path if needed
|
45 |
+
label_encoder_path = 'label_encoder.joblib' # Update with the correct path if needed
|
46 |
+
|
47 |
+
# Load resources
|
48 |
+
model, tokenizer, label_encoder = load_resources(model_path, tokenizer_path, label_encoder_path)
|
49 |
+
|
50 |
+
# Input for prediction
|
51 |
+
input_text = input("Enter a transaction description for prediction: ")
|
52 |
+
predicted_category = predict(model, tokenizer, label_encoder, input_text)
|
53 |
+
print(f"The predicted category is: {predicted_category}")
|
54 |
+
|
55 |
+
# Execute the main function
|
56 |
+
if __name__ == "__main__":
|
57 |
+
main()
|
requirements.txt
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
numpy
|
2 |
pandas
|
3 |
tensorflow
|
4 |
-
transformers
|
5 |
scikit-learn
|
6 |
-
torch
|
7 |
-
torchvision
|
8 |
-
torchaudio
|
|
|
1 |
numpy
|
2 |
pandas
|
3 |
tensorflow
|
|
|
4 |
scikit-learn
|
|
|
|
|
|
setup.md
CHANGED
@@ -1,59 +1,53 @@
|
|
1 |
-
## Install Git LFS
|
2 |
-
```
|
3 |
-
brew install git-lfs
|
4 |
-
```
|
5 |
-
or download from https://git-lfs.github.com/
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
```
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
```
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
```
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
```
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
type >>pip install -r requirements.txt
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
# Steps to Run the Model
|
3 |
+
|
4 |
+
1. **Clone the Repository**:
|
5 |
+
Open your command line interface (CLI) and clone the repository using:
|
6 |
+
```bash
|
7 |
+
git clone https://huggingface.co/webslate/transactify
|
8 |
+
```
|
9 |
+
|
10 |
+
2. **Create the Virtual Environment**:
|
11 |
+
Navigate to the project directory and create a virtual environment:
|
12 |
+
```bash
|
13 |
+
python -m venv transactify_venv
|
14 |
+
```
|
15 |
+
|
16 |
+
3. **Activate the Virtual Environment**:
|
17 |
+
To activate the virtual environment, follow these steps:
|
18 |
+
- Open your command line interface (CLI).
|
19 |
+
- Type the following commands:
|
20 |
+
```bash
|
21 |
+
cd transactify_venv
|
22 |
+
cd Scripts
|
23 |
+
activate
|
24 |
+
```
|
25 |
+
|
26 |
+
4. **Install Required Libraries**:
|
27 |
+
After activating the virtual environment, install the necessary libraries by typing:
|
28 |
+
```bash
|
29 |
+
pip install -r requirements.txt
|
30 |
+
```
|
31 |
+
|
32 |
+
5. **Run the Data Preprocessing Code**:
|
33 |
+
Execute the data preprocessing script by typing:
|
34 |
+
```bash
|
35 |
+
python data_preprocessing.py
|
36 |
+
```
|
37 |
+
|
38 |
+
6. **Run the LSTM Model Code**:
|
39 |
+
Train the LSTM model by executing:
|
40 |
+
```bash
|
41 |
+
python LSTM_model.py
|
42 |
+
```
|
43 |
+
|
44 |
+
7. **Generate the H5 File**:
|
45 |
+
After training, you can generate the model file (`transactify.h5`).
|
46 |
+
|
47 |
+
8. **Run the Prediction Code**:
|
48 |
+
To make predictions using the trained model, type:
|
49 |
+
```bash
|
50 |
+
python prediction.py
|
51 |
+
```
|
52 |
+
|
53 |
+
Following these steps will set up and run the Transactify model for predicting transaction categories based on descriptions.
|
|