|
|
dataset: |
|
|
dataset_name: "sevirlr" |
|
|
img_height: 128 |
|
|
img_width: 128 |
|
|
in_len: 7 |
|
|
out_len: 6 |
|
|
seq_len: 13 |
|
|
plot_stride: 1 |
|
|
interval_real_time: 10 |
|
|
sample_mode: "sequent" |
|
|
stride: 6 |
|
|
layout: "NTHWC" |
|
|
start_date: null |
|
|
train_test_split_date: [2019, 6, 1] |
|
|
end_date: null |
|
|
val_ratio: 0.1 |
|
|
metrics_mode: "0" |
|
|
metrics_list: ['csi', 'pod', 'sucr', 'bias'] |
|
|
threshold_list: [16, 74, 133, 160, 181, 219] |
|
|
aug_mode: "2" |
|
|
layout: |
|
|
in_len: 7 |
|
|
out_len: 6 |
|
|
in_step: &in_step 1 |
|
|
out_step: &out_step 1 |
|
|
in_out_diff: &in_out_diff 1 |
|
|
img_height: 128 |
|
|
img_width: 128 |
|
|
data_channels: 1 |
|
|
layout: "NTHWC" |
|
|
optim: |
|
|
total_batch_size: 8 |
|
|
micro_batch_size: 2 |
|
|
seed: 0 |
|
|
float32_matmul_precision: "high" |
|
|
method: "adamw" |
|
|
lr: 1.0e-3 |
|
|
wd: 1.0e-5 |
|
|
betas: [0.9, 0.999] |
|
|
gradient_clip_val: 1.0 |
|
|
max_epochs: 2000 |
|
|
loss_type: "l2" |
|
|
|
|
|
warmup_percentage: 0.1 |
|
|
lr_scheduler_mode: "cosine" |
|
|
min_lr_ratio: 1.0e-3 |
|
|
warmup_min_lr_ratio: 0.1 |
|
|
|
|
|
monitor: "val/loss" |
|
|
|
|
|
early_stop: false |
|
|
early_stop_mode: "min" |
|
|
early_stop_patience: 100 |
|
|
save_top_k: 3 |
|
|
logging: |
|
|
logging_prefix: "PreDiff" |
|
|
monitor_lr: true |
|
|
monitor_device: false |
|
|
track_grad_norm: -1 |
|
|
use_wandb: false |
|
|
profiler: null |
|
|
save_npy: true |
|
|
trainer: |
|
|
check_val_every_n_epoch: 50 |
|
|
log_step_ratio: 0.001 |
|
|
precision: 32 |
|
|
find_unused_parameters: false |
|
|
num_sanity_val_steps: 2 |
|
|
eval: |
|
|
train_example_data_idx_list: [0, ] |
|
|
val_example_data_idx_list: [0, 16, 32, 48, 64, 72, 96, 108, 128] |
|
|
test_example_data_idx_list: [0, 16, 32, 48, 64, 72, 96, 108, 128] |
|
|
eval_example_only: true |
|
|
eval_aligned: true |
|
|
eval_unaligned: true |
|
|
num_samples_per_context: 1 |
|
|
fs: 20 |
|
|
label_offset: [-0.5, 0.5] |
|
|
label_avg_int: false |
|
|
fvd_features: 400 |
|
|
model: |
|
|
diffusion: |
|
|
data_shape: [6, 128, 128, 1] |
|
|
beta_schedule: "linear" |
|
|
use_ema: true |
|
|
log_every_t: 100 |
|
|
clip_denoised: false |
|
|
linear_start: 1e-4 |
|
|
linear_end: 2e-2 |
|
|
cosine_s: 8e-3 |
|
|
given_betas: null |
|
|
original_elbo_weight: 0. |
|
|
v_posterior: 0. |
|
|
l_simple_weight: 1. |
|
|
parameterization: "eps" |
|
|
learn_logvar: true |
|
|
logvar_init: 0. |
|
|
|
|
|
latent_shape: [6, 16, 16, 64] |
|
|
cond_stage_model: "__is_first_stage__" |
|
|
num_timesteps_cond: null |
|
|
cond_stage_trainable: false |
|
|
cond_stage_forward: null |
|
|
scale_by_std: false |
|
|
scale_factor: 1.0 |
|
|
latent_cond_shape: [7, 16, 16, 64] |
|
|
align: |
|
|
alignment_type: "avg_x" |
|
|
guide_scale: 50.0 |
|
|
model_type: "cuboid" |
|
|
model_args: |
|
|
input_shape: [6, 16, 16, 64] |
|
|
out_channels: 1 |
|
|
base_units: 128 |
|
|
scale_alpha: 1.0 |
|
|
depth: [1, 1] |
|
|
downsample: 2 |
|
|
downsample_type: "patch_merge" |
|
|
block_attn_patterns: "axial" |
|
|
num_heads: 4 |
|
|
attn_drop: 0.1 |
|
|
proj_drop: 0.1 |
|
|
ffn_drop: 0.1 |
|
|
ffn_activation: "gelu" |
|
|
gated_ffn: false |
|
|
norm_layer: "layer_norm" |
|
|
use_inter_ffn: true |
|
|
hierarchical_pos_embed: false |
|
|
pos_embed_type: "t+h+w" |
|
|
padding_type: "zeros" |
|
|
checkpoint_level: 0 |
|
|
use_relative_pos: true |
|
|
self_attn_use_final_proj: true |
|
|
|
|
|
num_global_vectors: 0 |
|
|
use_global_vector_ffn: true |
|
|
use_global_self_attn: false |
|
|
separate_global_qkv: false |
|
|
global_dim_ratio: 1 |
|
|
|
|
|
attn_linear_init_mode: "0" |
|
|
ffn_linear_init_mode: "0" |
|
|
ffn2_linear_init_mode: "2" |
|
|
attn_proj_linear_init_mode: "2" |
|
|
conv_init_mode: "0" |
|
|
down_linear_init_mode: "0" |
|
|
global_proj_linear_init_mode: "2" |
|
|
norm_init_mode: "0" |
|
|
|
|
|
time_embed_channels_mult: 4 |
|
|
time_embed_use_scale_shift_norm: false |
|
|
time_embed_dropout: 0.0 |
|
|
|
|
|
pool: "attention" |
|
|
readout_seq: true |
|
|
out_len: 6 |
|
|
model_ckpt_path: "pretrained_sevirlr_alignment_avg_x_cuboid_v1.pt" |
|
|
latent_model: |
|
|
input_shape: [7, 16, 16, 64] |
|
|
target_shape: [6, 16, 16, 64] |
|
|
base_units: 256 |
|
|
|
|
|
scale_alpha: 1.0 |
|
|
num_heads: 4 |
|
|
attn_drop: 0.1 |
|
|
proj_drop: 0.1 |
|
|
ffn_drop: 0.1 |
|
|
|
|
|
downsample: 2 |
|
|
downsample_type: "patch_merge" |
|
|
upsample_type: "upsample" |
|
|
upsample_kernel_size: 3 |
|
|
|
|
|
depth: [4, 4] |
|
|
self_pattern: "axial" |
|
|
|
|
|
num_global_vectors: 0 |
|
|
use_dec_self_global: false |
|
|
dec_self_update_global: true |
|
|
use_dec_cross_global: false |
|
|
use_global_vector_ffn: false |
|
|
use_global_self_attn: true |
|
|
separate_global_qkv: true |
|
|
global_dim_ratio: 1 |
|
|
|
|
|
ffn_activation: "gelu" |
|
|
gated_ffn: false |
|
|
norm_layer: "layer_norm" |
|
|
padding_type: "zeros" |
|
|
pos_embed_type: "t+h+w" |
|
|
checkpoint_level: 0 |
|
|
use_relative_pos: true |
|
|
self_attn_use_final_proj: true |
|
|
|
|
|
attn_linear_init_mode: "0" |
|
|
ffn_linear_init_mode: "0" |
|
|
ffn2_linear_init_mode: "2" |
|
|
attn_proj_linear_init_mode: "2" |
|
|
conv_init_mode: "0" |
|
|
down_up_linear_init_mode: "0" |
|
|
global_proj_linear_init_mode: "2" |
|
|
norm_init_mode: "0" |
|
|
|
|
|
time_embed_channels_mult: 4 |
|
|
time_embed_use_scale_shift_norm: false |
|
|
time_embed_dropout: 0.0 |
|
|
unet_res_connect: true |
|
|
vae: |
|
|
pretrained_ckpt_path: "pretrained_sevirlr_vae_8x8x64_v1_2.pt" |
|
|
data_channels: 1 |
|
|
down_block_types: ['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] |
|
|
in_channels: 1 |
|
|
block_out_channels: [128, 256, 512, 512] |
|
|
act_fn: 'silu' |
|
|
latent_channels: 64 |
|
|
up_block_types: ['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] |
|
|
norm_num_groups: 32 |
|
|
layers_per_block: 2 |
|
|
out_channels: 1 |
|
|
|