|
|
"""Code is adapted from https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/diffusionmodules/util.py""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.nn import functional as F |
|
|
from einops import repeat |
|
|
|
|
|
|
|
|
def checkpoint(func, inputs, params, flag): |
|
|
""" |
|
|
Evaluate a function without caching intermediate activations, allowing for |
|
|
reduced memory at the expense of extra compute in the backward pass. |
|
|
:param func: the function to evaluate. |
|
|
:param inputs: the argument sequence to pass to `func`. |
|
|
:param params: a sequence of parameters `func` depends on but does not |
|
|
explicitly take as arguments. |
|
|
:param flag: if False, disable gradient checkpointing. |
|
|
""" |
|
|
if flag: |
|
|
args = tuple(inputs) + tuple(params) |
|
|
return CheckpointFunction.apply(func, len(inputs), *args) |
|
|
else: |
|
|
return func(*inputs) |
|
|
|
|
|
|
|
|
class CheckpointFunction(torch.autograd.Function): |
|
|
|
|
|
@staticmethod |
|
|
def forward(ctx, run_function, length, *args): |
|
|
ctx.run_function = run_function |
|
|
ctx.input_tensors = list(args[:length]) |
|
|
ctx.input_params = list(args[length:]) |
|
|
|
|
|
with torch.no_grad(): |
|
|
output_tensors = ctx.run_function(*ctx.input_tensors) |
|
|
return output_tensors |
|
|
|
|
|
@staticmethod |
|
|
def backward(ctx, *output_grads): |
|
|
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] |
|
|
with torch.enable_grad(): |
|
|
|
|
|
|
|
|
|
|
|
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] |
|
|
output_tensors = ctx.run_function(*shallow_copies) |
|
|
input_grads = torch.autograd.grad( |
|
|
output_tensors, |
|
|
ctx.input_tensors + ctx.input_params, |
|
|
output_grads, |
|
|
allow_unused=True, |
|
|
) |
|
|
del ctx.input_tensors |
|
|
del ctx.input_params |
|
|
del output_tensors |
|
|
return (None, None) + input_grads |
|
|
|
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): |
|
|
""" |
|
|
Create sinusoidal timestep embeddings. |
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
|
These may be fractional. |
|
|
:param dim: the dimension of the output. |
|
|
:param max_period: controls the minimum frequency of the embeddings. |
|
|
:return: an [N x dim] Tensor of positional embeddings. |
|
|
""" |
|
|
if not repeat_only: |
|
|
half = dim // 2 |
|
|
freqs = torch.exp( |
|
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half |
|
|
).to(device=timesteps.device) |
|
|
args = timesteps[:, None].float() * freqs[None] |
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
|
if dim % 2: |
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
|
else: |
|
|
embedding = repeat(timesteps, 'b -> b d', d=dim) |
|
|
return embedding |
|
|
|
|
|
|
|
|
def zero_module(module): |
|
|
""" |
|
|
Zero out the parameters of a module and return it. |
|
|
""" |
|
|
for p in module.parameters(): |
|
|
p.detach().zero_() |
|
|
return module |
|
|
|
|
|
|
|
|
def normalization(channels): |
|
|
""" |
|
|
Make a standard normalization layer. |
|
|
:param channels: number of input channels. |
|
|
:return: an nn.Module for normalization. |
|
|
""" |
|
|
num_groups = min(32, channels) |
|
|
return nn.GroupNorm(num_groups, channels) |
|
|
|
|
|
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
|
""" |
|
|
Create a 1D, 2D, or 3D convolution module. |
|
|
""" |
|
|
if dims == 1: |
|
|
return nn.Conv1d(*args, **kwargs) |
|
|
elif dims == 2: |
|
|
return nn.Conv2d(*args, **kwargs) |
|
|
elif dims == 3: |
|
|
return nn.Conv3d(*args, **kwargs) |
|
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
|
|
|
def linear(*args, **kwargs): |
|
|
""" |
|
|
Create a linear module. |
|
|
""" |
|
|
return nn.Linear(*args, **kwargs) |
|
|
|
|
|
|
|
|
def avg_pool_nd(dims, *args, **kwargs): |
|
|
""" |
|
|
Create a 1D, 2D, or 3D average pooling module. |
|
|
""" |
|
|
if dims == 1: |
|
|
return nn.AvgPool1d(*args, **kwargs) |
|
|
elif dims == 2: |
|
|
return nn.AvgPool2d(*args, **kwargs) |
|
|
elif dims == 3: |
|
|
return nn.AvgPool3d(*args, **kwargs) |
|
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
|
|
|
def round_to(dat, c): |
|
|
return dat + (dat - dat % c) % c |
|
|
|
|
|
|
|
|
def get_activation(act, inplace=False, **kwargs): |
|
|
""" |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
act |
|
|
Name of the activation |
|
|
inplace |
|
|
Whether to perform inplace activation |
|
|
|
|
|
Returns |
|
|
------- |
|
|
activation_layer |
|
|
The activation |
|
|
""" |
|
|
if act is None: |
|
|
return lambda x: x |
|
|
if isinstance(act, str): |
|
|
if act == 'leaky': |
|
|
negative_slope = kwargs.get("negative_slope", 0.1) |
|
|
return nn.LeakyReLU(negative_slope, inplace=inplace) |
|
|
elif act == 'identity': |
|
|
return nn.Identity() |
|
|
elif act == 'elu': |
|
|
return nn.ELU(inplace=inplace) |
|
|
elif act == 'gelu': |
|
|
return nn.GELU() |
|
|
elif act == 'relu': |
|
|
return nn.ReLU() |
|
|
elif act == 'sigmoid': |
|
|
return nn.Sigmoid() |
|
|
elif act == 'tanh': |
|
|
return nn.Tanh() |
|
|
elif act == 'softrelu' or act == 'softplus': |
|
|
return nn.Softplus() |
|
|
elif act == 'softsign': |
|
|
return nn.Softsign() |
|
|
else: |
|
|
raise NotImplementedError('act="{}" is not supported. ' |
|
|
'Try to include it if you can find that in ' |
|
|
'https://pytorch.org/docs/stable/nn.html'.format(act)) |
|
|
else: |
|
|
return act |
|
|
|
|
|
|
|
|
def get_norm_layer(norm_type: str = 'layer_norm', |
|
|
axis: int = -1, |
|
|
epsilon: float = 1e-5, |
|
|
in_channels: int = 0, **kwargs): |
|
|
"""Get the normalization layer based on the provided type |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
norm_type |
|
|
The type of the layer normalization from ['layer_norm'] |
|
|
axis |
|
|
The axis to normalize the |
|
|
epsilon |
|
|
The epsilon of the normalization layer |
|
|
in_channels |
|
|
Input channel |
|
|
|
|
|
Returns |
|
|
------- |
|
|
norm_layer |
|
|
The layer normalization layer |
|
|
""" |
|
|
if isinstance(norm_type, str): |
|
|
if norm_type == 'layer_norm': |
|
|
assert in_channels > 0 |
|
|
assert axis == -1 |
|
|
norm_layer = nn.LayerNorm(normalized_shape=in_channels, eps=epsilon, **kwargs) |
|
|
else: |
|
|
raise NotImplementedError('norm_type={} is not supported'.format(norm_type)) |
|
|
return norm_layer |
|
|
elif norm_type is None: |
|
|
return nn.Identity() |
|
|
else: |
|
|
raise NotImplementedError('The type of normalization must be str') |
|
|
|
|
|
|
|
|
def _generalize_padding(x, pad_t, pad_h, pad_w, padding_type, t_pad_left=False): |
|
|
""" |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
x |
|
|
Shape (B, T, H, W, C) |
|
|
pad_t |
|
|
pad_h |
|
|
pad_w |
|
|
padding_type |
|
|
t_pad_left |
|
|
|
|
|
Returns |
|
|
------- |
|
|
out |
|
|
The result after padding the x. Shape will be (B, T + pad_t, H + pad_h, W + pad_w, C) |
|
|
""" |
|
|
if pad_t == 0 and pad_h == 0 and pad_w == 0: |
|
|
return x |
|
|
|
|
|
assert padding_type in ['zeros', 'ignore', 'nearest'] |
|
|
B, T, H, W, C = x.shape |
|
|
|
|
|
if padding_type == 'nearest': |
|
|
return F.interpolate(x.permute(0, 4, 1, 2, 3), size=(T + pad_t, H + pad_h, W + pad_w)).permute(0, 2, 3, 4, 1) |
|
|
else: |
|
|
if t_pad_left: |
|
|
return F.pad(x, (0, 0, 0, pad_w, 0, pad_h, pad_t, 0)) |
|
|
else: |
|
|
return F.pad(x, (0, 0, 0, pad_w, 0, pad_h, 0, pad_t)) |
|
|
|
|
|
|
|
|
def _generalize_unpadding(x, pad_t, pad_h, pad_w, padding_type): |
|
|
assert padding_type in['zeros', 'ignore', 'nearest'] |
|
|
B, T, H, W, C = x.shape |
|
|
if pad_t == 0 and pad_h == 0 and pad_w == 0: |
|
|
return x |
|
|
|
|
|
if padding_type == 'nearest': |
|
|
return F.interpolate(x.permute(0, 4, 1, 2, 3), size=(T - pad_t, H - pad_h, W - pad_w)).permute(0, 2, 3, 4, 1) |
|
|
else: |
|
|
return x[:, :(T - pad_t), :(H - pad_h), :(W - pad_w), :].contiguous() |
|
|
|
|
|
|
|
|
def apply_initialization(m, |
|
|
linear_mode="0", |
|
|
conv_mode="0", |
|
|
norm_mode="0", |
|
|
embed_mode="0"): |
|
|
if isinstance(m, nn.Linear): |
|
|
if linear_mode in ("0", ): |
|
|
nn.init.kaiming_normal_(m.weight, |
|
|
mode='fan_in', nonlinearity="linear") |
|
|
elif linear_mode in ("1", ): |
|
|
nn.init.kaiming_normal_(m.weight, |
|
|
a=0.1, |
|
|
mode='fan_out', |
|
|
nonlinearity="leaky_relu") |
|
|
elif linear_mode in ("2", ): |
|
|
nn.init.zeros_(m.weight) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
if hasattr(m, 'bias') and m.bias is not None: |
|
|
nn.init.zeros_(m.bias) |
|
|
|
|
|
elif isinstance(m, (nn.Conv2d, nn.Conv3d, nn.ConvTranspose2d, nn.ConvTranspose3d)): |
|
|
if conv_mode in ("0", ): |
|
|
m.reset_parameters() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif conv_mode in ("1", ): |
|
|
nn.init.kaiming_normal_(m.weight, |
|
|
a=0.1, |
|
|
mode='fan_out', |
|
|
nonlinearity="leaky_relu") |
|
|
if hasattr(m, 'bias') and m.bias is not None: |
|
|
nn.init.zeros_(m.bias) |
|
|
elif conv_mode in ("2", ): |
|
|
nn.init.zeros_(m.weight) |
|
|
if hasattr(m, 'bias') and m.bias is not None: |
|
|
nn.init.zeros_(m.bias) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
if norm_mode in ("0", ): |
|
|
if m.elementwise_affine: |
|
|
nn.init.ones_(m.weight) |
|
|
nn.init.zeros_(m.bias) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
elif isinstance(m, nn.GroupNorm): |
|
|
if norm_mode in ("0", ): |
|
|
if m.affine: |
|
|
nn.init.ones_(m.weight) |
|
|
nn.init.zeros_(m.bias) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
elif isinstance(m, nn.Embedding): |
|
|
if embed_mode in ("0", ): |
|
|
nn.init.trunc_normal_(m.weight.data, std=0.02) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
else: |
|
|
pass |
|
|
|
|
|
|
|
|
class WrapIdentity(nn.Identity): |
|
|
|
|
|
def __init__(self): |
|
|
super(WrapIdentity, self).__init__() |
|
|
|
|
|
def reset_parameters(self): |
|
|
pass |
|
|
|