Upload 3_8b_v/xtuner_config.py with huggingface_hub
Browse files- 3_8b_v/xtuner_config.py +303 -0
3_8b_v/xtuner_config.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from mmengine.dataset import DefaultSampler
|
3 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
4 |
+
LoggerHook, ParamSchedulerHook)
|
5 |
+
|
6 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
7 |
+
BitsAndBytesConfig,
|
8 |
+
CLIPImageProcessor, CLIPVisionModel,
|
9 |
+
SiglipVisionModel, SiglipImageProcessor, AutoProcessor)
|
10 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
11 |
+
|
12 |
+
from peft import LoraConfig
|
13 |
+
from torch.optim import AdamW
|
14 |
+
from xtuner.dataset import LLaVADataset, CambrianDataset, ConcatDataset
|
15 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
16 |
+
from xtuner.dataset.map_fns import llava_map_fn, cambrian_map_fn, template_map_fn_factory
|
17 |
+
from xtuner.dataset.samplers import LengthGroupedSampler
|
18 |
+
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
|
19 |
+
from xtuner.model import LLaVAModel, PikaModel
|
20 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
21 |
+
|
22 |
+
|
23 |
+
#######################################################################
|
24 |
+
# PART 1 Settings #
|
25 |
+
#######################################################################
|
26 |
+
# Model
|
27 |
+
llm_name_or_path = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
28 |
+
visual_encoder_name_or_path = 'google/siglip-so400m-patch14-384'
|
29 |
+
pretrained_pth = '/data/wenhao/projects/xtuner/work_dirs/final_new_p/projector'
|
30 |
+
|
31 |
+
prompt_template = PROMPT_TEMPLATE.llama3_chat
|
32 |
+
max_length = 4096
|
33 |
+
size = 378
|
34 |
+
batch_size = 1 # per_device
|
35 |
+
accumulative_counts = 32
|
36 |
+
lr = 4e-5
|
37 |
+
dataloader_num_workers = 0
|
38 |
+
max_epochs = 1
|
39 |
+
optim_type = AdamW
|
40 |
+
betas = (0.9, 0.999)
|
41 |
+
weight_decay = 0
|
42 |
+
max_norm = 1 # grad clip
|
43 |
+
warmup_ratio = 0.03
|
44 |
+
sf = False
|
45 |
+
|
46 |
+
# Save
|
47 |
+
save_steps = 200
|
48 |
+
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
49 |
+
|
50 |
+
#######################################################################
|
51 |
+
# PART 2 Model & Tokenizer & Image Processor #
|
52 |
+
#######################################################################
|
53 |
+
tokenizer = dict(
|
54 |
+
type=AutoTokenizer.from_pretrained,
|
55 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
56 |
+
trust_remote_code=True,
|
57 |
+
padding_side='right')
|
58 |
+
|
59 |
+
image_processor = dict(
|
60 |
+
type=CLIPImageProcessor.from_pretrained,
|
61 |
+
pretrained_model_name_or_path='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k',
|
62 |
+
trust_remote_code=True,
|
63 |
+
size=size,
|
64 |
+
crop_size=size)
|
65 |
+
|
66 |
+
model = dict(
|
67 |
+
type=PikaModel,
|
68 |
+
sf=sf,
|
69 |
+
freeze_llm=True,
|
70 |
+
freeze_visual_encoder=False,
|
71 |
+
pretrained_pth=pretrained_pth,
|
72 |
+
llm=dict(
|
73 |
+
type=AutoModelForCausalLM.from_pretrained,
|
74 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
75 |
+
trust_remote_code=True,
|
76 |
+
torch_dtype=torch.float16,),
|
77 |
+
visual_encoder=dict(
|
78 |
+
type=SiglipVisionModel.from_pretrained,
|
79 |
+
pretrained_model_name_or_path=visual_encoder_name_or_path))
|
80 |
+
|
81 |
+
#######################################################################
|
82 |
+
# PART 3 Dataset & Dataloader #
|
83 |
+
#######################################################################
|
84 |
+
m3it_data_root = '/data/wenhao/projects/xtuner/data/m3it/'
|
85 |
+
m3it_data_path = m3it_data_root + 'm3it.jsonl'
|
86 |
+
m3it_image_folder = m3it_data_root
|
87 |
+
m3it_dataset = dict(
|
88 |
+
type=CambrianDataset,
|
89 |
+
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/m3it/pre_token_llama31',
|
90 |
+
image_folder=m3it_image_folder,
|
91 |
+
image_processor=image_processor,
|
92 |
+
dataset_map_fn=cambrian_map_fn,
|
93 |
+
template_map_fn=dict(
|
94 |
+
type=template_map_fn_factory, template=prompt_template),
|
95 |
+
max_length=max_length,
|
96 |
+
pad_image_to_square=True)
|
97 |
+
|
98 |
+
|
99 |
+
chatterbox_data_root = '/data/wenhao/projects/xtuner/data/ChatterBox/'
|
100 |
+
chatterbox_data_path = chatterbox_data_root + 'chatterbox_76k.jsonl'
|
101 |
+
chatterbox_image_folder = chatterbox_data_root
|
102 |
+
chatterbox_dataset = dict(
|
103 |
+
type=CambrianDataset,
|
104 |
+
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/ChatterBox/pre_token_llama31',
|
105 |
+
image_folder=chatterbox_image_folder,
|
106 |
+
image_processor=image_processor,
|
107 |
+
dataset_map_fn=cambrian_map_fn,
|
108 |
+
template_map_fn=dict(
|
109 |
+
type=template_map_fn_factory, template=prompt_template),
|
110 |
+
max_length=max_length,
|
111 |
+
pad_image_to_square=True)
|
112 |
+
|
113 |
+
|
114 |
+
laion_data_root = '/data/wenhao/projects/xtuner/data/LLaVA-Pretrain/'
|
115 |
+
laion_data_path = laion_data_root + 'laion_558k.jsonl'
|
116 |
+
laion_image_folder = laion_data_root
|
117 |
+
laion_dataset = dict(
|
118 |
+
type=CambrianDataset,
|
119 |
+
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/LLaVA-Pretrain/pre_token_llama31',
|
120 |
+
image_folder=laion_image_folder,
|
121 |
+
image_processor=image_processor,
|
122 |
+
dataset_map_fn=cambrian_map_fn,
|
123 |
+
template_map_fn=dict(
|
124 |
+
type=template_map_fn_factory, template=prompt_template),
|
125 |
+
max_length=max_length,
|
126 |
+
pad_image_to_square=True)
|
127 |
+
|
128 |
+
face_data_root = '/data/wenhao/projects/xtuner/data/FaceCaption-15M/'
|
129 |
+
face_data_path = face_data_root + 'FaceCaption-100K.jsonl'
|
130 |
+
face_image_folder = face_data_root + 'full_data'
|
131 |
+
face_processed_text_folder = face_data_root + 'pre_token_llama3'
|
132 |
+
face_dataset = dict(
|
133 |
+
type=CambrianDataset,
|
134 |
+
offline_processed_text_folder=face_processed_text_folder,
|
135 |
+
image_folder=face_image_folder,
|
136 |
+
image_processor=image_processor,
|
137 |
+
dataset_map_fn=cambrian_map_fn,
|
138 |
+
template_map_fn=dict(
|
139 |
+
type=template_map_fn_factory, template=prompt_template),
|
140 |
+
max_length=max_length,
|
141 |
+
pad_image_to_square=True)
|
142 |
+
|
143 |
+
cost_data_root = '/data/wenhao/projects/xtuner/data/COST/'
|
144 |
+
cost_data_path = cost_data_root + 'cost.jsonl'
|
145 |
+
cost_image_folder = cost_data_root
|
146 |
+
cost_dataset = dict(
|
147 |
+
type=CambrianDataset,
|
148 |
+
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/COST/pre_token_llama31',
|
149 |
+
# tokenizer=tokenizer,
|
150 |
+
# data_path='/data/wenhao/projects/xtuner/data/COST/cost.jsonl',
|
151 |
+
image_folder=cost_image_folder,
|
152 |
+
image_processor=image_processor,
|
153 |
+
dataset_map_fn=cambrian_map_fn,
|
154 |
+
template_map_fn=dict(
|
155 |
+
type=template_map_fn_factory, template=prompt_template),
|
156 |
+
max_length=max_length,
|
157 |
+
pad_image_to_square=True)
|
158 |
+
|
159 |
+
sharept_data_root = '/data/wenhao/projects/xtuner/data/ShareGPT4V/'
|
160 |
+
sharept_data_path = sharept_data_root + 'sharegpt4v_pt.jsonl'
|
161 |
+
sharept_image_folder = '/data/wenhao/projects/xtuner/data/'
|
162 |
+
sharept_dataset = dict(
|
163 |
+
type=CambrianDataset,
|
164 |
+
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/ShareGPT4V/pre_token_llama31',
|
165 |
+
# tokenizer=tokenizer,
|
166 |
+
# data_path='/data/wenhao/projects/xtuner/data/ShareGPT4V/sharegpt4v_pt.jsonl',
|
167 |
+
image_folder=sharept_image_folder,
|
168 |
+
image_processor=image_processor,
|
169 |
+
dataset_map_fn=cambrian_map_fn,
|
170 |
+
template_map_fn=dict(
|
171 |
+
type=template_map_fn_factory, template=prompt_template),
|
172 |
+
max_length=max_length,
|
173 |
+
pad_image_to_square=True)
|
174 |
+
|
175 |
+
llavaone_data_root = '/data/wenhao/projects/xtuner/data/onevision/'
|
176 |
+
llavaone_data_path = '/data/wenhao/projects/xtuner/data/LLaVA-OneVision-Data/llava_onevision.jsonl'
|
177 |
+
llavaone_image_folder = llavaone_data_root + 'images'
|
178 |
+
llavaone_dataset = dict(
|
179 |
+
type=CambrianDataset,
|
180 |
+
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/onevision/pre_token_llama31',
|
181 |
+
# tokenizer=tokenizer,
|
182 |
+
# data_path='/data/wenhao/projects/xtuner/data/LLaVA-OneVision-Data/llava_onevision.jsonl',
|
183 |
+
image_folder=llavaone_image_folder,
|
184 |
+
image_processor=image_processor,
|
185 |
+
dataset_map_fn=cambrian_map_fn,
|
186 |
+
template_map_fn=dict(
|
187 |
+
type=template_map_fn_factory, template=prompt_template),
|
188 |
+
max_length=max_length,
|
189 |
+
pad_image_to_square=True)
|
190 |
+
|
191 |
+
train_dataset = dict(
|
192 |
+
type=ConcatDataset,
|
193 |
+
datasets=[m3it_dataset, chatterbox_dataset, laion_dataset, face_dataset, cost_dataset, sharept_dataset, llavaone_dataset],
|
194 |
+
)
|
195 |
+
|
196 |
+
train_dataloader = dict(
|
197 |
+
batch_size=batch_size,
|
198 |
+
num_workers=dataloader_num_workers,
|
199 |
+
dataset=train_dataset,
|
200 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
201 |
+
collate_fn=dict(type=default_collate_fn))
|
202 |
+
|
203 |
+
#######################################################################
|
204 |
+
# PART 4 Scheduler & Optimizer #
|
205 |
+
#######################################################################
|
206 |
+
# optimizer
|
207 |
+
optim_wrapper = dict(
|
208 |
+
type=AmpOptimWrapper,
|
209 |
+
optimizer=dict(
|
210 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
211 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
212 |
+
accumulative_counts=accumulative_counts,
|
213 |
+
loss_scale='dynamic',
|
214 |
+
dtype='float16')
|
215 |
+
|
216 |
+
# learning policy
|
217 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
218 |
+
param_scheduler = [
|
219 |
+
dict(
|
220 |
+
type=LinearLR,
|
221 |
+
start_factor=1e-5,
|
222 |
+
by_epoch=True,
|
223 |
+
begin=0,
|
224 |
+
end=warmup_ratio * max_epochs,
|
225 |
+
convert_to_iter_based=True),
|
226 |
+
dict(
|
227 |
+
type=CosineAnnealingLR,
|
228 |
+
eta_min=0.0,
|
229 |
+
by_epoch=True,
|
230 |
+
begin=warmup_ratio * max_epochs,
|
231 |
+
T_max=max_epochs,
|
232 |
+
convert_to_iter_based=True)
|
233 |
+
]
|
234 |
+
|
235 |
+
# train, val, test setting
|
236 |
+
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)
|
237 |
+
|
238 |
+
#######################################################################
|
239 |
+
# PART 5 Runtime #
|
240 |
+
#######################################################################
|
241 |
+
# Evaluate the generation performance during the training
|
242 |
+
evaluation_freq = 100
|
243 |
+
SYSTEM = ''
|
244 |
+
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
|
245 |
+
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']
|
246 |
+
|
247 |
+
|
248 |
+
# Log the dialogue periodically during the training process, optional
|
249 |
+
custom_hooks = [
|
250 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
251 |
+
dict(
|
252 |
+
type=EvaluateChatHook,
|
253 |
+
tokenizer=tokenizer,
|
254 |
+
image_processor=image_processor,
|
255 |
+
every_n_iters=evaluation_freq,
|
256 |
+
evaluation_inputs=evaluation_inputs,
|
257 |
+
evaluation_images=evaluation_images,
|
258 |
+
system=SYSTEM,
|
259 |
+
prompt_template=prompt_template)
|
260 |
+
]
|
261 |
+
|
262 |
+
# configure default hooks
|
263 |
+
default_hooks = dict(
|
264 |
+
# record the time of every iteration.
|
265 |
+
timer=dict(type=IterTimerHook),
|
266 |
+
# print log every 100 iterations.
|
267 |
+
logger=dict(type=LoggerHook, interval=10),
|
268 |
+
# enable the parameter scheduler.
|
269 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
270 |
+
# save checkpoint per epoch.
|
271 |
+
checkpoint=dict(
|
272 |
+
type=CheckpointHook,
|
273 |
+
by_epoch=False,
|
274 |
+
interval=save_steps,
|
275 |
+
max_keep_ckpts=save_total_limit),
|
276 |
+
# set sampler seed in distributed evrionment.
|
277 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
278 |
+
)
|
279 |
+
|
280 |
+
# configure environment
|
281 |
+
env_cfg = dict(
|
282 |
+
# whether to enable cudnn benchmark
|
283 |
+
cudnn_benchmark=False,
|
284 |
+
# set multi process parameters
|
285 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
286 |
+
# set distributed parameters
|
287 |
+
dist_cfg=dict(backend='nccl'),
|
288 |
+
)
|
289 |
+
|
290 |
+
# set visualizer
|
291 |
+
visualizer = None
|
292 |
+
|
293 |
+
# set log level
|
294 |
+
log_level = 'INFO'
|
295 |
+
|
296 |
+
# load from which checkpoint
|
297 |
+
load_from = None
|
298 |
+
|
299 |
+
# whether to resume training from the loaded checkpoint
|
300 |
+
resume = False
|
301 |
+
|
302 |
+
# Defaults to use random seed and disable `deterministic`
|
303 |
+
randomness = dict(seed=None, deterministic=False)
|