AuroraCap-8B-Pretrain / xtuner_config.py
wchai's picture
Upload xtuner_config.py with huggingface_hub
fd32045 verified
import torch
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from transformers import (AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig,
CLIPImageProcessor, CLIPVisionModel,
SiglipVisionModel, SiglipImageProcessor, AutoProcessor)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from xtuner.dataset import LLaVADataset, CambrianDataset, ConcatDataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import llava_map_fn, cambrian_map_fn, template_map_fn_factory
from xtuner.dataset.samplers import LengthGroupedSampler
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.model import LLaVAModel, PikaModel
from xtuner.utils import PROMPT_TEMPLATE
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
llm_name_or_path = 'meta-llama/Meta-Llama-3.1-8B-Instruct'
visual_encoder_name_or_path = 'google/siglip-so400m-patch14-384'
# pretrained_pth = '/data/wenhao/projects/xtuner/work_dirs/final_siglip_llama31_P/projector'
prompt_template = PROMPT_TEMPLATE.llama3_chat
max_length = 4096
size = 378
batch_size = 8 # per_device
accumulative_counts = 2
lr = 1e-3
dataloader_num_workers = 0
max_epochs = 1
optim_type = AdamW
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip
warmup_ratio = 0.03
# Save
save_steps = 200
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
#######################################################################
# PART 2 Model & Tokenizer & Image Processor #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=llm_name_or_path,
trust_remote_code=True,
padding_side='right')
image_processor = dict(
type=CLIPImageProcessor.from_pretrained,
pretrained_model_name_or_path='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k',
trust_remote_code=True,
size=size,
crop_size=size)
model = dict(
type=PikaModel,
freeze_llm=True,
freeze_visual_encoder=True,
# pretrained_pth=pretrained_pth,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=llm_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16,),
visual_encoder=dict(
type=SiglipVisionModel.from_pretrained,
pretrained_model_name_or_path=visual_encoder_name_or_path))
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
dense_data_root = '/data/wenhao/projects/xtuner/data/DenseFusion-1M/'
dense_data_path = dense_data_root + 'DenseFusion-1M/DenseFusion-1M-instruct.jsonl'
dense_image_folder = dense_data_root + '1M_data'
dense_processed_text_folder = dense_data_root + 'pre_token_llama3'
dense_dataset = dict(
type=CambrianDataset,
image_folder=dense_image_folder,
image_processor=image_processor,
# data_path=dense_data_path,
# tokenizer=tokenizer,
offline_processed_text_folder=dense_processed_text_folder,
dataset_map_fn=cambrian_map_fn,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
max_length=max_length,
pad_image_to_square=True)
laion_data_root = '/data/wenhao/projects/xtuner/data/LLaVA-Pretrain/'
laion_data_path = laion_data_root + 'laion_558k.jsonl'
laion_image_folder = laion_data_root
laion_dataset = dict(
type=CambrianDataset,
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/LLaVA-Pretrain/pre_token_llama31',
image_folder=laion_image_folder,
image_processor=image_processor,
dataset_map_fn=cambrian_map_fn,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
max_length=max_length,
pad_image_to_square=True)
face_data_root = '/data/wenhao/projects/xtuner/data/FaceCaption-15M/'
face_data_path = face_data_root + 'FaceCaption-100K.jsonl'
face_image_folder = face_data_root + 'full_data'
face_processed_text_folder = face_data_root + 'pre_token_llama3'
face_dataset = dict(
type=CambrianDataset,
offline_processed_text_folder=face_processed_text_folder,
image_folder=face_image_folder,
image_processor=image_processor,
dataset_map_fn=cambrian_map_fn,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
max_length=max_length,
pad_image_to_square=True)
allava_data_root = '/data/wenhao/projects/xtuner/data/ALLaVA-4V'
allava_cl_data_path = '/data/wenhao/projects/xtuner/data/ALLaVA-4V/ALLaVA-Caption-LAION-4V.jsonl'
allava_cl_image_folder = allava_data_root
allava_cl_dataset = dict(
type=CambrianDataset,
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/ALLaVA-4V/pre_token_cl_llama31',
# tokenizer=tokenizer,
# data_path=allava_cl_data_path,
image_folder=allava_cl_image_folder,
image_processor=image_processor,
dataset_map_fn=cambrian_map_fn,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
max_length=max_length,
pad_image_to_square=True)
allava_cv_data_path = '/data/wenhao/projects/xtuner/data/ALLaVA-4V/ALLaVA-Caption-VFLAN-4V.jsonl'
allava_image_folder = allava_data_root
allava_cv_dataset = dict(
type=CambrianDataset,
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/ALLaVA-4V/pre_token_cv_llama31',
# tokenizer=tokenizer,
# data_path=allava_cv_data_path,
image_folder=allava_image_folder,
image_processor=image_processor,
dataset_map_fn=cambrian_map_fn,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
max_length=max_length,
pad_image_to_square=True)
sharept_data_root = '/data/wenhao/projects/xtuner/data/ShareGPT4V/'
sharept_data_path = sharept_data_root + 'sharegpt4v_pt.jsonl'
sharept_image_folder = '/data/wenhao/projects/xtuner/data/'
sharept_dataset = dict(
type=CambrianDataset,
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/ShareGPT4V/pre_token_llama31',
# tokenizer=tokenizer,
# data_path='/data/wenhao/projects/xtuner/data/ShareGPT4V/sharegpt4v_pt.jsonl',
image_folder=sharept_image_folder,
image_processor=image_processor,
dataset_map_fn=cambrian_map_fn,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
max_length=max_length,
pad_image_to_square=True)
train_dataset = dict(
type=ConcatDataset,
datasets=[laion_dataset, dense_dataset, face_dataset, sharept_dataset, allava_cl_dataset, allava_cv_dataset],
)
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=train_dataset,
sampler=dict(type=DefaultSampler, shuffle=True),
collate_fn=dict(type=default_collate_fn))
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='float16')
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
T_max=max_epochs,
convert_to_iter_based=True)
]
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)
#######################################################################
# PART 5 Runtime #
#######################################################################
# Evaluate the generation performance during the training
evaluation_freq = 100
SYSTEM = ''
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
image_processor=image_processor,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
evaluation_images=evaluation_images,
system=SYSTEM,
prompt_template=prompt_template)
]
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 100 iterations.
logger=dict(type=LoggerHook, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per epoch.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
# set visualizer
visualizer = None
# set log level
log_level = 'INFO'
# load from which checkpoint
load_from = None
# whether to resume training from the loaded checkpoint
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)