|
import torch |
|
from mmengine.dataset import DefaultSampler |
|
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, |
|
LoggerHook, ParamSchedulerHook) |
|
|
|
from transformers import (AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig, |
|
CLIPImageProcessor, CLIPVisionModel, |
|
SiglipVisionModel, SiglipImageProcessor, AutoProcessor) |
|
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR |
|
|
|
from peft import LoraConfig |
|
from torch.optim import AdamW |
|
from xtuner.dataset import LLaVADataset, CambrianDataset, ConcatDataset |
|
from xtuner.dataset.collate_fns import default_collate_fn |
|
from xtuner.dataset.map_fns import llava_map_fn, cambrian_map_fn, template_map_fn_factory |
|
from xtuner.dataset.samplers import LengthGroupedSampler |
|
from xtuner.engine import DatasetInfoHook, EvaluateChatHook |
|
from xtuner.model import LLaVAModel, PikaModel |
|
from xtuner.utils import PROMPT_TEMPLATE |
|
|
|
|
|
|
|
|
|
|
|
|
|
llm_name_or_path = 'meta-llama/Meta-Llama-3.1-8B-Instruct' |
|
visual_encoder_name_or_path = 'google/siglip-so400m-patch14-384' |
|
|
|
|
|
prompt_template = PROMPT_TEMPLATE.llama3_chat |
|
max_length = 4096 |
|
size = 378 |
|
|
|
batch_size = 8 |
|
accumulative_counts = 2 |
|
lr = 1e-3 |
|
dataloader_num_workers = 0 |
|
max_epochs = 1 |
|
optim_type = AdamW |
|
betas = (0.9, 0.999) |
|
weight_decay = 0 |
|
max_norm = 1 |
|
warmup_ratio = 0.03 |
|
|
|
|
|
save_steps = 200 |
|
save_total_limit = 2 |
|
|
|
|
|
|
|
|
|
tokenizer = dict( |
|
type=AutoTokenizer.from_pretrained, |
|
pretrained_model_name_or_path=llm_name_or_path, |
|
trust_remote_code=True, |
|
padding_side='right') |
|
|
|
image_processor = dict( |
|
type=CLIPImageProcessor.from_pretrained, |
|
pretrained_model_name_or_path='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k', |
|
trust_remote_code=True, |
|
size=size, |
|
crop_size=size) |
|
|
|
model = dict( |
|
type=PikaModel, |
|
freeze_llm=True, |
|
freeze_visual_encoder=True, |
|
|
|
llm=dict( |
|
type=AutoModelForCausalLM.from_pretrained, |
|
pretrained_model_name_or_path=llm_name_or_path, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16,), |
|
visual_encoder=dict( |
|
type=SiglipVisionModel.from_pretrained, |
|
pretrained_model_name_or_path=visual_encoder_name_or_path)) |
|
|
|
|
|
|
|
|
|
dense_data_root = '/data/wenhao/projects/xtuner/data/DenseFusion-1M/' |
|
dense_data_path = dense_data_root + 'DenseFusion-1M/DenseFusion-1M-instruct.jsonl' |
|
dense_image_folder = dense_data_root + '1M_data' |
|
dense_processed_text_folder = dense_data_root + 'pre_token_llama3' |
|
dense_dataset = dict( |
|
type=CambrianDataset, |
|
image_folder=dense_image_folder, |
|
image_processor=image_processor, |
|
|
|
|
|
offline_processed_text_folder=dense_processed_text_folder, |
|
dataset_map_fn=cambrian_map_fn, |
|
template_map_fn=dict( |
|
type=template_map_fn_factory, template=prompt_template), |
|
max_length=max_length, |
|
pad_image_to_square=True) |
|
|
|
laion_data_root = '/data/wenhao/projects/xtuner/data/LLaVA-Pretrain/' |
|
laion_data_path = laion_data_root + 'laion_558k.jsonl' |
|
laion_image_folder = laion_data_root |
|
laion_dataset = dict( |
|
type=CambrianDataset, |
|
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/LLaVA-Pretrain/pre_token_llama31', |
|
image_folder=laion_image_folder, |
|
image_processor=image_processor, |
|
dataset_map_fn=cambrian_map_fn, |
|
template_map_fn=dict( |
|
type=template_map_fn_factory, template=prompt_template), |
|
max_length=max_length, |
|
pad_image_to_square=True) |
|
|
|
face_data_root = '/data/wenhao/projects/xtuner/data/FaceCaption-15M/' |
|
face_data_path = face_data_root + 'FaceCaption-100K.jsonl' |
|
face_image_folder = face_data_root + 'full_data' |
|
face_processed_text_folder = face_data_root + 'pre_token_llama3' |
|
face_dataset = dict( |
|
type=CambrianDataset, |
|
offline_processed_text_folder=face_processed_text_folder, |
|
image_folder=face_image_folder, |
|
image_processor=image_processor, |
|
dataset_map_fn=cambrian_map_fn, |
|
template_map_fn=dict( |
|
type=template_map_fn_factory, template=prompt_template), |
|
max_length=max_length, |
|
pad_image_to_square=True) |
|
|
|
allava_data_root = '/data/wenhao/projects/xtuner/data/ALLaVA-4V' |
|
allava_cl_data_path = '/data/wenhao/projects/xtuner/data/ALLaVA-4V/ALLaVA-Caption-LAION-4V.jsonl' |
|
allava_cl_image_folder = allava_data_root |
|
allava_cl_dataset = dict( |
|
type=CambrianDataset, |
|
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/ALLaVA-4V/pre_token_cl_llama31', |
|
|
|
|
|
image_folder=allava_cl_image_folder, |
|
image_processor=image_processor, |
|
dataset_map_fn=cambrian_map_fn, |
|
template_map_fn=dict( |
|
type=template_map_fn_factory, template=prompt_template), |
|
max_length=max_length, |
|
pad_image_to_square=True) |
|
|
|
allava_cv_data_path = '/data/wenhao/projects/xtuner/data/ALLaVA-4V/ALLaVA-Caption-VFLAN-4V.jsonl' |
|
allava_image_folder = allava_data_root |
|
allava_cv_dataset = dict( |
|
type=CambrianDataset, |
|
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/ALLaVA-4V/pre_token_cv_llama31', |
|
|
|
|
|
image_folder=allava_image_folder, |
|
image_processor=image_processor, |
|
dataset_map_fn=cambrian_map_fn, |
|
template_map_fn=dict( |
|
type=template_map_fn_factory, template=prompt_template), |
|
max_length=max_length, |
|
pad_image_to_square=True) |
|
|
|
sharept_data_root = '/data/wenhao/projects/xtuner/data/ShareGPT4V/' |
|
sharept_data_path = sharept_data_root + 'sharegpt4v_pt.jsonl' |
|
sharept_image_folder = '/data/wenhao/projects/xtuner/data/' |
|
sharept_dataset = dict( |
|
type=CambrianDataset, |
|
offline_processed_text_folder='/data/wenhao/projects/xtuner/data/ShareGPT4V/pre_token_llama31', |
|
|
|
|
|
image_folder=sharept_image_folder, |
|
image_processor=image_processor, |
|
dataset_map_fn=cambrian_map_fn, |
|
template_map_fn=dict( |
|
type=template_map_fn_factory, template=prompt_template), |
|
max_length=max_length, |
|
pad_image_to_square=True) |
|
|
|
train_dataset = dict( |
|
type=ConcatDataset, |
|
datasets=[laion_dataset, dense_dataset, face_dataset, sharept_dataset, allava_cl_dataset, allava_cv_dataset], |
|
) |
|
|
|
train_dataloader = dict( |
|
batch_size=batch_size, |
|
num_workers=dataloader_num_workers, |
|
dataset=train_dataset, |
|
sampler=dict(type=DefaultSampler, shuffle=True), |
|
collate_fn=dict(type=default_collate_fn)) |
|
|
|
|
|
|
|
|
|
|
|
optim_wrapper = dict( |
|
type=AmpOptimWrapper, |
|
optimizer=dict( |
|
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), |
|
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), |
|
accumulative_counts=accumulative_counts, |
|
loss_scale='dynamic', |
|
dtype='float16') |
|
|
|
|
|
|
|
param_scheduler = [ |
|
dict( |
|
type=LinearLR, |
|
start_factor=1e-5, |
|
by_epoch=True, |
|
begin=0, |
|
end=warmup_ratio * max_epochs, |
|
convert_to_iter_based=True), |
|
dict( |
|
type=CosineAnnealingLR, |
|
eta_min=0.0, |
|
by_epoch=True, |
|
begin=warmup_ratio * max_epochs, |
|
T_max=max_epochs, |
|
convert_to_iter_based=True) |
|
] |
|
|
|
|
|
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1) |
|
|
|
|
|
|
|
|
|
|
|
evaluation_freq = 100 |
|
SYSTEM = '' |
|
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg' |
|
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture'] |
|
|
|
|
|
|
|
custom_hooks = [ |
|
dict(type=DatasetInfoHook, tokenizer=tokenizer), |
|
dict( |
|
type=EvaluateChatHook, |
|
tokenizer=tokenizer, |
|
image_processor=image_processor, |
|
every_n_iters=evaluation_freq, |
|
evaluation_inputs=evaluation_inputs, |
|
evaluation_images=evaluation_images, |
|
system=SYSTEM, |
|
prompt_template=prompt_template) |
|
] |
|
|
|
|
|
default_hooks = dict( |
|
|
|
timer=dict(type=IterTimerHook), |
|
|
|
logger=dict(type=LoggerHook, interval=10), |
|
|
|
param_scheduler=dict(type=ParamSchedulerHook), |
|
|
|
checkpoint=dict( |
|
type=CheckpointHook, |
|
by_epoch=False, |
|
interval=save_steps, |
|
max_keep_ckpts=save_total_limit), |
|
|
|
sampler_seed=dict(type=DistSamplerSeedHook), |
|
) |
|
|
|
|
|
env_cfg = dict( |
|
|
|
cudnn_benchmark=False, |
|
|
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), |
|
|
|
dist_cfg=dict(backend='nccl'), |
|
) |
|
|
|
|
|
visualizer = None |
|
|
|
|
|
log_level = 'INFO' |
|
|
|
|
|
load_from = None |
|
|
|
|
|
resume = False |
|
|
|
|
|
randomness = dict(seed=None, deterministic=False) |