waveletdeboshir commited on
Commit
dd57f71
·
verified ·
1 Parent(s): 5973beb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -4,7 +4,7 @@ language:
4
  - ru
5
  library_name: transformers
6
  pipeline_tag: automatic-speech-recognition
7
- base_model: waveletdeboshir/whisper-base-ru-pruned-finetuned
8
  tags:
9
  - asr
10
  - Pytorch
@@ -41,7 +41,7 @@ datasets:
41
  - mozilla-foundation/common_voice_15_0
42
  ---
43
 
44
- # Whisper-base-ru-pruned-finetuned
45
 
46
  ## Model info
47
  This is a finetuned version of pruned whisper-base model ([waveletdeboshir/whisper-base-ru-pruned](https://huggingface.co/waveletdeboshir/whisper-base-ru-pruned)) for Russian language.
@@ -50,7 +50,7 @@ Model was finetuned on russian part of [mozilla-foundation/common_voice_15_0](ht
50
 
51
  ## Metrics
52
 
53
- | metric | dataset | waveletdeboshir/whisper-base-ru-pruned | waveletdeboshir/whisper-small-ru-pruned-finetuned |
54
  | :------ | :------ | :------ | :------ |
55
  | WER (without punctuation) | common_voice_15_0_test | | |
56
  | WER | common_voice_15_0_test | | |
@@ -60,7 +60,7 @@ Model was finetuned on russian part of [mozilla-foundation/common_voice_15_0](ht
60
  Only 10% tokens was left including special whisper tokens (no language tokens except \<|ru|\> and \<|en|\>, no timestamp tokens), 200 most popular tokens from tokenizer and 4000 most popular Russian tokens computed by tokenization of russian text corpus.
61
 
62
  Model size is 30% less then original whisper-base:
63
- | | openai/whisper-base | waveletdeboshir/whisper-base-ru-pruned-finetuned |
64
  | :------ | :------ | :------ |
65
  | n of parameters | 74 M | 48 M |
66
  | n of parameters (with proj_out layer) | 99 M | 50 M |
@@ -78,8 +78,8 @@ Model can be used as an original whisper:
78
  >>> wav, sr = torchaudio.load("audio.wav")
79
 
80
  >>> # load model and processor
81
- >>> processor = WhisperProcessor.from_pretrained("waveletdeboshir/whisper-base-ru-pruned-finetuned")
82
- >>> model = WhisperForConditionalGeneration.from_pretrained("waveletdeboshir/whisper-base-ru-pruned-finetuned")
83
 
84
  >>> input_features = processor(wav[0], sampling_rate=sr, return_tensors="pt").input_features
85
 
 
4
  - ru
5
  library_name: transformers
6
  pipeline_tag: automatic-speech-recognition
7
+ base_model: waveletdeboshir/whisper-base-ru-pruned
8
  tags:
9
  - asr
10
  - Pytorch
 
41
  - mozilla-foundation/common_voice_15_0
42
  ---
43
 
44
+ # Whisper-base-ru-pruned-ft
45
 
46
  ## Model info
47
  This is a finetuned version of pruned whisper-base model ([waveletdeboshir/whisper-base-ru-pruned](https://huggingface.co/waveletdeboshir/whisper-base-ru-pruned)) for Russian language.
 
50
 
51
  ## Metrics
52
 
53
+ | metric | dataset | waveletdeboshir/whisper-base-ru-pruned | waveletdeboshir/whisper-small-ru-pruned-ft |
54
  | :------ | :------ | :------ | :------ |
55
  | WER (without punctuation) | common_voice_15_0_test | | |
56
  | WER | common_voice_15_0_test | | |
 
60
  Only 10% tokens was left including special whisper tokens (no language tokens except \<|ru|\> and \<|en|\>, no timestamp tokens), 200 most popular tokens from tokenizer and 4000 most popular Russian tokens computed by tokenization of russian text corpus.
61
 
62
  Model size is 30% less then original whisper-base:
63
+ | | openai/whisper-base | waveletdeboshir/whisper-base-ru-pruned-ft |
64
  | :------ | :------ | :------ |
65
  | n of parameters | 74 M | 48 M |
66
  | n of parameters (with proj_out layer) | 99 M | 50 M |
 
78
  >>> wav, sr = torchaudio.load("audio.wav")
79
 
80
  >>> # load model and processor
81
+ >>> processor = WhisperProcessor.from_pretrained("waveletdeboshir/whisper-base-ru-pruned-ft")
82
+ >>> model = WhisperForConditionalGeneration.from_pretrained("waveletdeboshir/whisper-base-ru-pruned-ft")
83
 
84
  >>> input_features = processor(wav[0], sampling_rate=sr, return_tensors="pt").input_features
85