warisqr7 Jzuluaga commited on
Commit
6c404c6
0 Parent(s):

Duplicate from Jzuluaga/accent-id-commonaccent_xlsr-en-english

Browse files

Co-authored-by: Juan Pablo Zuluaga <Jzuluaga@users.noreply.huggingface.co>

.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ thumbnail: null
5
+ tags:
6
+ - audio-classification
7
+ - speechbrain
8
+ - embeddings
9
+ - Accent Identification
10
+ - pytorch
11
+ - wav2vec2
12
+ - XLSR
13
+ - CommonAccent
14
+ - English
15
+ license: mit
16
+ datasets:
17
+ - CommonVoice
18
+ metrics:
19
+ - Accuracy
20
+ widget:
21
+ - example_title: USA
22
+ src: >-
23
+ https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-en-english/resolve/main/data/us_1.wav
24
+ - example_title: Scotland
25
+ src: >-
26
+ https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-en-english/resolve/main/data/scotland_1.wav
27
+ - example_title: Malaysia
28
+ src: >-
29
+ https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-en-english/resolve/main/data/malaysia_1.wav
30
+ - example_title: Philippines
31
+ src: >-
32
+ https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-en-english/resolve/main/data/philippines_1.wav
33
+ ---
34
+
35
+
36
+ <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
37
+ <br/><br/>
38
+
39
+
40
+ # CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on CommonVoice
41
+
42
+ **English Accent Classifier with XLSR model**
43
+
44
+
45
+ **Abstract**:
46
+ Despite the recent advancements in Automatic Speech Recognition (ASR), the recognition of accented speech still remains a dominant problem. In order to create more inclusive ASR systems, research has shown that the integration of accent information, as part of a larger ASR framework, can lead to the mitigation of accented speech errors. We address multilingual accent classification through the ECAPA-TDNN and Wav2Vec 2.0/XLSR architectures which have been proven to perform well on a variety of speech-related downstream tasks. We introduce a simple-to-follow recipe aligned to the SpeechBrain toolkit for accent classification based on Common Voice 7.0 (English) and Common Voice 11.0 (Italian, German, and Spanish). Furthermore, we establish new state-of-the-art for English accent classification with as high as 95% accuracy. We also study the internal categorization of the Wav2Vev 2.0 embeddings through t-SNE, noting that there is a level of clustering based on phonological similarity.
47
+
48
+
49
+ This repository provides all the necessary tools to perform accent identification from speech recordings with [SpeechBrain](https://github.com/speechbrain/speechbrain).
50
+ The system uses a model pretrained on the CommonAccent dataset in English (16 accents). This system is based on the CommonLanguage Recipe located here: https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonLanguage
51
+
52
+
53
+ The provided system can recognize the following 16 accents from short speech recordings in English (EN):
54
+
55
+ ```
56
+ - us
57
+ - england
58
+ - australia
59
+ - indian
60
+ - canada
61
+ - bermuda
62
+ - scotland
63
+ - african
64
+ - ireland
65
+ - newzealand
66
+ - wales
67
+ - malaysia
68
+ - philippines
69
+ - singapore
70
+ - hongkong
71
+ - southatlandtic
72
+ ```
73
+
74
+ <a href="https://github.com/JuanPZuluaga/accent-recog-slt2022"> <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green"> </a> Github repository link: https://github.com/JuanPZuluaga/accent-recog-slt2022
75
+
76
+
77
+ **NOTE**: due to incompatibility with the model and the current SpeechBrain interfaces, we cannot offer the Inference API. Please, follow the steps in **"Perform Accent Identification from Speech Recordings"** to use this Italian Accent ID model.
78
+
79
+ For a better experience, we encourage you to learn more about
80
+ [SpeechBrain](https://speechbrain.github.io).
81
+
82
+
83
+ ## Pipeline description
84
+ This system is composed of a fine-tuned XLSR model coupled with statistical pooling. A classifier, trained with NLL Loss, is applied on top of that.
85
+
86
+ The system is trained with recordings sampled at 16kHz (single channel).
87
+ The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.
88
+
89
+ ## Install SpeechBrain
90
+
91
+ First of all, please install SpeechBrain with the following command:
92
+
93
+ ```
94
+ pip install speechbrain
95
+ ```
96
+
97
+ Please notice that we encourage you to read our tutorials and learn more about
98
+ [SpeechBrain](https://speechbrain.github.io).
99
+
100
+ ### Perform Accent Identification from Speech Recordings
101
+
102
+ ```python
103
+ import torchaudio
104
+ from speechbrain.pretrained.interfaces import foreign_class
105
+
106
+ classifier = foreign_class(source="Jzuluaga/accent-id-commonaccent_xlsr-en-english", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
107
+
108
+ # US Accent Example
109
+ out_prob, score, index, text_lab = classifier.classify_file('Jzuluaga/accent-id-commonaccent_xlsr-en-english/data/us.wav')
110
+ print(text_lab)
111
+
112
+ # Philippines Example
113
+ out_prob, score, index, text_lab = classifier.classify_file('Jzuluaga/accent-id-commonaccent_xlsr-en-english/data/philippines.wav')
114
+ print(text_lab)
115
+ ```
116
+
117
+ ### Inference on GPU
118
+ To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
119
+
120
+ ### Training
121
+
122
+ The model was trained with SpeechBrain.
123
+
124
+ To train it from scratch follow these steps:
125
+
126
+ 1. Clone SpeechBrain:
127
+ ```bash
128
+ git clone https://github.com/speechbrain/speechbrain/
129
+ ```
130
+
131
+ 2. Install it:
132
+ ```bash
133
+ cd speechbrain
134
+ pip install -r requirements.txt
135
+ pip install -e .
136
+ ```
137
+
138
+ 3. Clone our repository in https://github.com/JuanPZuluaga/accent-recog-slt2022:
139
+
140
+ ```bash
141
+ git clone https://github.com/JuanPZuluaga/accent-recog-slt2022
142
+ cd CommonAccent/accent_id
143
+ python train_w2v2.py hparams/train_w2v2.yaml
144
+ ```
145
+
146
+ You can find our training results (models, logs, etc) in this repository's `Files and versions` page.
147
+
148
+ ### Limitations
149
+ The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
150
+
151
+
152
+
153
+ #### Cite our work: CommonAccent
154
+
155
+ If you find useful this work, please cite our work as:
156
+
157
+ ```
158
+ @article{zuluaga2023commonaccent,
159
+ title={CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice},
160
+ author={Zuluaga-Gomez, Juan and Ahmed, Sara and Visockas, Danielius and Subakan, Cem},
161
+ journal={Interspeech 2023},
162
+ url={https://arxiv.org/abs/2305.18283},
163
+ year={2023}
164
+ }
165
+ ```
166
+
167
+ #### Cite XLSR model
168
+
169
+ ```@article{conneau2020unsupervised,
170
+ title={Unsupervised cross-lingual representation learning for speech recognition},
171
+ author={Conneau, Alexis and Baevski, Alexei and Collobert, Ronan and Mohamed, Abdelrahman and Auli, Michael},
172
+ journal={arXiv preprint arXiv:2006.13979},
173
+ year={2020}
174
+ }
175
+ ```
176
+
177
+
178
+ # **Cite SpeechBrain**
179
+ Please, cite SpeechBrain if you use it for your research or business.
180
+
181
+
182
+ ```bibtex
183
+ @misc{speechbrain,
184
+ title={{SpeechBrain}: A General-Purpose Speech Toolkit},
185
+ author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
186
+ year={2021},
187
+ eprint={2106.04624},
188
+ archivePrefix={arXiv},
189
+ primaryClass={eess.AS},
190
+ note={arXiv:2106.04624}
191
+ }
192
+ ```
custom_interface.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from speechbrain.pretrained import Pretrained
3
+
4
+
5
+ class CustomEncoderWav2vec2Classifier(Pretrained):
6
+ """A ready-to-use class for utterance-level classification (e.g, speaker-id,
7
+ language-id, emotion recognition, keyword spotting, etc).
8
+
9
+ The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
10
+ are defined in the yaml file. If you want to
11
+ convert the predicted index into a corresponding text label, please
12
+ provide the path of the label_encoder in a variable called 'lab_encoder_file'
13
+ within the yaml.
14
+
15
+ The class can be used either to run only the encoder (encode_batch()) to
16
+ extract embeddings or to run a classification step (classify_batch()).
17
+ ```
18
+
19
+ Example
20
+ -------
21
+ >>> import torchaudio
22
+ >>> from speechbrain.pretrained import EncoderClassifier
23
+ >>> # Model is downloaded from the speechbrain HuggingFace repo
24
+ >>> tmpdir = getfixture("tmpdir")
25
+ >>> classifier = EncoderClassifier.from_hparams(
26
+ ... source="speechbrain/spkrec-ecapa-voxceleb",
27
+ ... savedir=tmpdir,
28
+ ... )
29
+
30
+ >>> # Compute embeddings
31
+ >>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav")
32
+ >>> embeddings = classifier.encode_batch(signal)
33
+
34
+ >>> # Classification
35
+ >>> prediction = classifier .classify_batch(signal)
36
+ """
37
+
38
+ def __init__(self, *args, **kwargs):
39
+ super().__init__(*args, **kwargs)
40
+
41
+ def encode_batch(self, wavs, wav_lens=None, normalize=False):
42
+ """Encodes the input audio into a single vector embedding.
43
+
44
+ The waveforms should already be in the model's desired format.
45
+ You can call:
46
+ ``normalized = <this>.normalizer(signal, sample_rate)``
47
+ to get a correctly converted signal in most cases.
48
+
49
+ Arguments
50
+ ---------
51
+ wavs : torch.tensor
52
+ Batch of waveforms [batch, time, channels] or [batch, time]
53
+ depending on the model. Make sure the sample rate is fs=16000 Hz.
54
+ wav_lens : torch.tensor
55
+ Lengths of the waveforms relative to the longest one in the
56
+ batch, tensor of shape [batch]. The longest one should have
57
+ relative length 1.0 and others len(waveform) / max_length.
58
+ Used for ignoring padding.
59
+ normalize : bool
60
+ If True, it normalizes the embeddings with the statistics
61
+ contained in mean_var_norm_emb.
62
+
63
+ Returns
64
+ -------
65
+ torch.tensor
66
+ The encoded batch
67
+ """
68
+ # Manage single waveforms in input
69
+ if len(wavs.shape) == 1:
70
+ wavs = wavs.unsqueeze(0)
71
+
72
+ # Assign full length if wav_lens is not assigned
73
+ if wav_lens is None:
74
+ wav_lens = torch.ones(wavs.shape[0], device=self.device)
75
+
76
+ # Storing waveform in the specified device
77
+ wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
78
+ wavs = wavs.float()
79
+
80
+ # Computing features and embeddings
81
+ outputs = self.mods.wav2vec2(wavs)
82
+
83
+ # last dim will be used for AdaptativeAVG pool
84
+ outputs = self.mods.avg_pool(outputs, wav_lens)
85
+ outputs = outputs.view(outputs.shape[0], -1)
86
+ return outputs
87
+
88
+ def classify_batch(self, wavs, wav_lens=None):
89
+ """Performs classification on the top of the encoded features.
90
+
91
+ It returns the posterior probabilities, the index and, if the label
92
+ encoder is specified it also the text label.
93
+
94
+ Arguments
95
+ ---------
96
+ wavs : torch.tensor
97
+ Batch of waveforms [batch, time, channels] or [batch, time]
98
+ depending on the model. Make sure the sample rate is fs=16000 Hz.
99
+ wav_lens : torch.tensor
100
+ Lengths of the waveforms relative to the longest one in the
101
+ batch, tensor of shape [batch]. The longest one should have
102
+ relative length 1.0 and others len(waveform) / max_length.
103
+ Used for ignoring padding.
104
+
105
+ Returns
106
+ -------
107
+ out_prob
108
+ The log posterior probabilities of each class ([batch, N_class])
109
+ score:
110
+ It is the value of the log-posterior for the best class ([batch,])
111
+ index
112
+ The indexes of the best class ([batch,])
113
+ text_lab:
114
+ List with the text labels corresponding to the indexes.
115
+ (label encoder should be provided).
116
+ """
117
+ outputs = self.encode_batch(wavs, wav_lens)
118
+ outputs = self.mods.output_mlp(outputs)
119
+ out_prob = self.hparams.softmax(outputs)
120
+ score, index = torch.max(out_prob, dim=-1)
121
+ text_lab = self.hparams.label_encoder.decode_torch(index)
122
+ return out_prob, score, index, text_lab
123
+
124
+ def classify_file(self, path):
125
+ """Classifies the given audiofile into the given set of labels.
126
+
127
+ Arguments
128
+ ---------
129
+ path : str
130
+ Path to audio file to classify.
131
+
132
+ Returns
133
+ -------
134
+ out_prob
135
+ The log posterior probabilities of each class ([batch, N_class])
136
+ score:
137
+ It is the value of the log-posterior for the best class ([batch,])
138
+ index
139
+ The indexes of the best class ([batch,])
140
+ text_lab:
141
+ List with the text labels corresponding to the indexes.
142
+ (label encoder should be provided).
143
+ """
144
+ waveform = self.load_audio(path)
145
+ # Fake a batch:
146
+ batch = waveform.unsqueeze(0)
147
+ rel_length = torch.tensor([1.0])
148
+ outputs = self.encode_batch(batch, rel_length)
149
+ outputs = self.mods.output_mlp(outputs).squeeze(1)
150
+ out_prob = self.hparams.softmax(outputs)
151
+ score, index = torch.max(out_prob, dim=-1)
152
+ text_lab = self.hparams.label_encoder.decode_torch(index)
153
+ return out_prob, score, index, text_lab
154
+
155
+ def forward(self, wavs, wav_lens=None, normalize=False):
156
+ return self.encode_batch(
157
+ wavs=wavs, wav_lens=wav_lens, normalize=normalize
158
+ )
data/.hola ADDED
File without changes
data/malaysia_1.wav ADDED
Binary file (234 kB). View file
 
data/philippines_1.wav ADDED
Binary file (184 kB). View file
 
data/scotland_1.wav ADDED
Binary file (94.5 kB). View file
 
data/us_1.wav ADDED
Binary file (98.3 kB). View file
 
hyperparams.yaml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ############################################################################
2
+ # Model: WAV2VEC XLSR model for Accent Recognition (English)
3
+ # see paper: https://arxiv.org/abs/2305.18283
4
+ # ############################################################################
5
+
6
+ # Hparams NEEDED
7
+ HPARAMS_NEEDED: ["encoder_dim", "out_n_neurons", "label_encoder", "softmax"]
8
+ # Modules Needed
9
+ MODULES_NEEDED: ["wav2vec2", "avg_pool", "output_mlp"]
10
+
11
+ # Feature parameters
12
+ # wav2vec2_hub: facebook/wav2vec2-base
13
+ wav2vec2_hub: "facebook/wav2vec2-large-xlsr-53"
14
+
15
+ # Pretrain folder (HuggingFace)
16
+ pretrained_path: Jzuluaga/accent-id-commonaccent_xlsr-en-english
17
+ # URL for the biggest Fairseq english wav2vec2 model.
18
+
19
+ # parameters
20
+ encoder_dim: 1024
21
+ out_n_neurons: 16
22
+
23
+ wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
24
+ source: !ref <wav2vec2_hub>
25
+ output_norm: True
26
+ freeze: True
27
+ save_path: wav2vec2_checkpoints
28
+
29
+ avg_pool: !new:speechbrain.nnet.pooling.StatisticsPooling
30
+ return_std: False
31
+
32
+ output_mlp: !new:speechbrain.nnet.linear.Linear
33
+ input_size: !ref <encoder_dim>
34
+ n_neurons: !ref <out_n_neurons>
35
+ bias: False
36
+
37
+ model: !new:torch.nn.ModuleList
38
+ - [!ref <output_mlp>]
39
+
40
+ modules:
41
+ wav2vec2: !ref <wav2vec2>
42
+ output_mlp: !ref <output_mlp>
43
+ avg_pool: !ref <avg_pool>
44
+
45
+ softmax: !new:speechbrain.nnet.activations.Softmax
46
+
47
+ label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder
48
+
49
+
50
+ pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
51
+ loadables:
52
+ wav2vec2: !ref <wav2vec2>
53
+ model: !ref <model>
54
+ label_encoder: !ref <label_encoder>
55
+ paths:
56
+ wav2vec2: !ref <pretrained_path>/wav2vec2.ckpt
57
+ model: !ref <pretrained_path>/model.ckpt
58
+ label_encoder: !ref <pretrained_path>/label_encoder.txt
59
+
label_encoder.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 'us' => 0
2
+ 'england' => 1
3
+ 'australia' => 2
4
+ 'indian' => 3
5
+ 'canada' => 4
6
+ 'bermuda' => 5
7
+ 'scotland' => 6
8
+ 'african' => 7
9
+ 'ireland' => 8
10
+ 'newzealand' => 9
11
+ 'wales' => 10
12
+ 'malaysia' => 11
13
+ 'philippines' => 12
14
+ 'singapore' => 13
15
+ 'hongkong' => 14
16
+ 'southatlandtic' => 15
17
+ ================
18
+ 'starting_index' => 0
model.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52128f15268f3fb8dc61798447b2e1aaee72806707d5f8b26b14766a87778e82
3
+ size 66411
wav2vec2.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f54814f95e5880e701790339f641b968676da4d82888908f232a8828178d6ba
3
+ size 1261923125