Upload DocumentSentenceRelevancePipeline
Browse files- config.json +9 -0
- pipeline.py +109 -0
config.json
CHANGED
@@ -7,6 +7,15 @@
|
|
7 |
"AutoModel": "modeling.MultiHeadModel"
|
8 |
},
|
9 |
"classifier_dropout": 0.1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"encoder_name": "tasksource/deberta-base-long-nli",
|
11 |
"id2label": {
|
12 |
"0": "irrelevant",
|
|
|
7 |
"AutoModel": "modeling.MultiHeadModel"
|
8 |
},
|
9 |
"classifier_dropout": 0.1,
|
10 |
+
"custom_pipelines": {
|
11 |
+
"context-relevance": {
|
12 |
+
"impl": "pipeline.DocumentSentenceRelevancePipeline",
|
13 |
+
"pt": [
|
14 |
+
"AutoModel"
|
15 |
+
],
|
16 |
+
"tf": []
|
17 |
+
}
|
18 |
+
},
|
19 |
"encoder_name": "tasksource/deberta-base-long-nli",
|
20 |
"id2label": {
|
21 |
"0": "irrelevant",
|
pipeline.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Pipeline
|
2 |
+
import torch
|
3 |
+
from typing import Union
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
def convert_to_list(data):
|
8 |
+
first_list = next(iter(data.values()))
|
9 |
+
return [
|
10 |
+
{key: values[i] for key, values in data.items()}
|
11 |
+
for i in range(len(first_list))
|
12 |
+
]
|
13 |
+
|
14 |
+
class DocumentSentenceRelevancePipeline(Pipeline):
|
15 |
+
def _sanitize_parameters(self, **kwargs):
|
16 |
+
threshold = kwargs.get("threshold", 0.5)
|
17 |
+
return {}, {}, {"threshold": threshold}
|
18 |
+
|
19 |
+
def preprocess(self, inputs):
|
20 |
+
question = inputs.get("question", "")
|
21 |
+
context = inputs.get("context", [""])
|
22 |
+
response = inputs.get("response", "")
|
23 |
+
|
24 |
+
q_enc = self.tokenizer(question, add_special_tokens=True, truncation=False, padding=False)
|
25 |
+
r_enc = self.tokenizer(response, add_special_tokens=True, truncation=False, padding=False)
|
26 |
+
|
27 |
+
question_ids = q_enc["input_ids"]
|
28 |
+
response_ids = r_enc["input_ids"]
|
29 |
+
|
30 |
+
document_sentences_ids = []
|
31 |
+
for s in context:
|
32 |
+
s_enc = self.tokenizer(s, add_special_tokens=True, truncation=False, padding=False)
|
33 |
+
document_sentences_ids.append(s_enc["input_ids"])
|
34 |
+
|
35 |
+
ids = question_ids + response_ids
|
36 |
+
pair_ids = []
|
37 |
+
for s_ids in document_sentences_ids:
|
38 |
+
pair_ids.extend(s_ids)
|
39 |
+
|
40 |
+
total_length = len(ids) + len(pair_ids)
|
41 |
+
if total_length > self.tokenizer.model_max_length:
|
42 |
+
num_tokens_to_remove = total_length - self.tokenizer.model_max_length
|
43 |
+
ids, pair_ids, _ = self.tokenizer.truncate_sequences(
|
44 |
+
ids=ids,
|
45 |
+
pair_ids=pair_ids,
|
46 |
+
num_tokens_to_remove=num_tokens_to_remove,
|
47 |
+
truncation_strategy="only_second",
|
48 |
+
stride=0,
|
49 |
+
)
|
50 |
+
combined_ids = ids + pair_ids
|
51 |
+
token_types = [0]*len(ids) + [1]*len(pair_ids)
|
52 |
+
attention_mask = [1]*len(combined_ids)
|
53 |
+
|
54 |
+
sentence_positions = []
|
55 |
+
current_pos = len(ids)
|
56 |
+
found_sentences = 0
|
57 |
+
|
58 |
+
for i, tok_id in enumerate(pair_ids):
|
59 |
+
if tok_id == self.tokenizer.cls_token_id:
|
60 |
+
sentence_positions.append(current_pos + i)
|
61 |
+
found_sentences += 1
|
62 |
+
|
63 |
+
input_ids = torch.tensor([combined_ids], dtype=torch.long)
|
64 |
+
attention_mask = torch.tensor([attention_mask], dtype=torch.long)
|
65 |
+
token_type_ids = torch.tensor([token_types], dtype=torch.long)
|
66 |
+
sentence_positions = torch.tensor([sentence_positions], dtype=torch.long)
|
67 |
+
|
68 |
+
return {
|
69 |
+
"input_ids": input_ids,
|
70 |
+
"attention_mask": attention_mask,
|
71 |
+
"token_type_ids": token_type_ids,
|
72 |
+
"sentence_positions": sentence_positions
|
73 |
+
}
|
74 |
+
|
75 |
+
def _forward(self, model_inputs):
|
76 |
+
return self.model(**model_inputs)
|
77 |
+
|
78 |
+
def __call__(self, inputs: Union[dict[str, str], list[dict[str, str]]], **kwargs):
|
79 |
+
if isinstance(inputs, dict):
|
80 |
+
inputs = [inputs]
|
81 |
+
model_outputs = super().__call__(inputs, **kwargs)
|
82 |
+
pipeline_outputs = []
|
83 |
+
for i, output in enumerate(model_outputs):
|
84 |
+
sentences = inputs[i]["context"]
|
85 |
+
output["sentences"]["sentence"] = sentences
|
86 |
+
output['sentences'] = convert_to_list(output['sentences'])
|
87 |
+
pipeline_outputs.append(output)
|
88 |
+
return pipeline_outputs if len(pipeline_outputs) > 1 else pipeline_outputs[0]
|
89 |
+
|
90 |
+
def postprocess(self, model_outputs, threshold = 0.5):
|
91 |
+
doc_logits = model_outputs.doc_logits
|
92 |
+
sent_logits = model_outputs.sent_logits
|
93 |
+
document_probabilities = torch.softmax(doc_logits, dim=-1)
|
94 |
+
sentence_probabilities = torch.softmax(sent_logits, dim=-1)
|
95 |
+
|
96 |
+
document_best_class = (document_probabilities[:, 1] > threshold).long()
|
97 |
+
sentence_best_class = (sentence_probabilities[:, :, 1] > threshold).long()
|
98 |
+
document_score = document_probabilities[:, document_best_class]
|
99 |
+
sentence_best_class = sentence_best_class.squeeze()
|
100 |
+
batch_indices = torch.arange(sentence_probabilities.size(1))
|
101 |
+
sentence_scores = sentence_probabilities.squeeze()[batch_indices, sentence_best_class]
|
102 |
+
best_document_label = document_best_class.numpy().item()
|
103 |
+
best_document_label = self.model.config.id2label[best_document_label]
|
104 |
+
|
105 |
+
best_sentence_labels = sentence_best_class.numpy().tolist()
|
106 |
+
best_sentence_labels = [self.model.config.id2label[label] for label in best_sentence_labels]
|
107 |
+
document_output = {"label": best_document_label, "score": document_score.numpy().item()}
|
108 |
+
sentence_output = {"label": best_sentence_labels, "score": sentence_scores.numpy().tolist()}
|
109 |
+
return {"document": document_output, "sentences": sentence_output}
|