update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: bsd-3-clause
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: ast_6-finetuned-ICBHI
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# ast_6-finetuned-ICBHI
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.2034
|
20 |
+
- Accuracy: 0.6620
|
21 |
+
- Sensitivity: 0.4858
|
22 |
+
- Specificity: 0.8195
|
23 |
+
- Score: 0.6526
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 3e-05
|
43 |
+
- train_batch_size: 4
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 16
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 5
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:|
|
57 |
+
| 0.9212 | 1.0 | 258 | 1.0044 | 0.6 | 0.4850 | 0.7028 | 0.5939 |
|
58 |
+
| 0.8937 | 2.0 | 517 | 0.8603 | 0.6431 | 0.3791 | 0.8792 | 0.6292 |
|
59 |
+
| 0.6352 | 3.0 | 776 | 0.9617 | 0.6442 | 0.5303 | 0.7461 | 0.6382 |
|
60 |
+
| 0.1363 | 4.0 | 1035 | 1.2034 | 0.6620 | 0.4858 | 0.8195 | 0.6526 |
|
61 |
+
| 0.0806 | 4.99 | 1290 | 1.4452 | 0.6587 | 0.5288 | 0.7749 | 0.6518 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.30.0.dev0
|
67 |
+
- Pytorch 2.0.0+cu118
|
68 |
+
- Datasets 2.12.0
|
69 |
+
- Tokenizers 0.13.3
|