|
{ |
|
"dataset.debug": false, |
|
"dataset.git_diff": "", |
|
"dataset.git_sha1": "unknown", |
|
"dataset.manual_sample_ids": [], |
|
"dataset.output_dir": "output", |
|
"dataset.path": "/mnt/wd_ssd/beagle_train_data/datasets/ds_EXAONE-3.5-2.4B-Instruct", |
|
"dataset.run_name": "temp_run", |
|
"dataset.seed": 42, |
|
"dataset_generation.batch_size": 1, |
|
"dataset_generation.debug": false, |
|
"dataset_generation.debug_target": null, |
|
"dataset_generation.ds_prefix": "ds_", |
|
"dataset_generation.git_diff": "", |
|
"dataset_generation.git_sha1": "unknown", |
|
"dataset_generation.max_length": 4096, |
|
"dataset_generation.output_dir": "output", |
|
"dataset_generation.run_name": "temp_run", |
|
"dataset_generation.save_every": 1000, |
|
"dataset_generation.seed": 42, |
|
"inference.debug": false, |
|
"inference.detail_time_stats": false, |
|
"inference.draft_tree_shape": "mc_sim_7b_65", |
|
"inference.git_diff": "", |
|
"inference.git_sha1": "unknown", |
|
"inference.max_new_tokens": 512, |
|
"inference.mode": "speculative", |
|
"inference.output_dir": "output", |
|
"inference.run_name": "temp_run", |
|
"inference.seed": 42, |
|
"modeling.add_noise": true, |
|
"modeling.attention_offset": "random.randrange(0, 3)", |
|
"modeling.attention_wind": "5", |
|
"modeling.ckpt_path": null, |
|
"modeling.debug": false, |
|
"modeling.decoder_key_remap": {}, |
|
"modeling.dtype": "torch.bfloat16", |
|
"modeling.frozen_targets": [], |
|
"modeling.git_diff": "", |
|
"modeling.git_sha1": "unknown", |
|
"modeling.layer_path": "transformer.h", |
|
"modeling.lmhead_path": "lm_head", |
|
"modeling.model_path": "beagle/models/exaone3.5/EXAONE-3.5-2.4B-Instruct/", |
|
"modeling.norm_path": "transformer.ln_f", |
|
"modeling.output_dir": "output", |
|
"modeling.reuse_layer": null, |
|
"modeling.rotary_path": "transformer.rotary", |
|
"modeling.run_name": "temp_run", |
|
"modeling.seed": 42, |
|
"modeling.tokenizer_path": "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct", |
|
"modeling.use_fc_eagle": false, |
|
"modeling.use_lower_layers": 7, |
|
"modeling.use_state_distill": false, |
|
"training.adam_beta2": 0.95, |
|
"training.bf16": true, |
|
"training.ddp_find_unused_parameters": false, |
|
"training.debug": false, |
|
"training.eval_steps": 100, |
|
"training.eval_strategy": "steps", |
|
"training.filter_out_shorts": true, |
|
"training.git_diff": "diff --git a/beagle/model_load.py b/beagle/model_load.py\nindex 2181ef7..95b25d6 100644\n--- a/beagle/model_load.py\n+++ b/beagle/model_load.py\n@@ -90,12 +90,10 @@ def get_safe_tensor_paths(path):\n \n \n def load_speculative_model_if_possible(modeling_configs, **kwargs):\n- from transformers.dynamic_module_utils import get_class_from_dynamic_module\n-\n try:\n- config = AutoConfig.from_pretrained(modeling_configs.model_path, trust_remote_code=True)\n- except:\n config = AutoConfig.from_pretrained(modeling_configs.ckpt_path, trust_remote_code=True)\n+ except:\n+ config = AutoConfig.from_pretrained(modeling_configs.model_path, trust_remote_code=True)\n \n for key, val in modeling_configs.get_obj().items():\n old_val = getattr(config, f'beagle_{key}', None)\n@@ -105,6 +103,7 @@ def load_speculative_model_if_possible(modeling_configs, **kwargs):\n if val != old_val:\n print('[\u2757]', f'new/old config[{key}] mismatch: {val} != {old_val}.')\n \n+ from transformers.dynamic_module_utils import get_class_from_dynamic_module\n try:\n class_ref = config.auto_map['AutoModelForSpeculativeCausalLM']\n model_class = get_class_from_dynamic_module(class_ref, modeling_configs.model_path)\n@@ -120,9 +119,7 @@ def load_speculative_model_if_possible(modeling_configs, **kwargs):\n trust_remote_code=True, **kwargs)\n return model, True\n \n- # if we were to use modeling_configs.ckpt_path, that means somehow the model_path\n- # does not include model binary files. This can happen when model_path is specified\n- # with a checkpoint directory where the modeling_*.py are missing.\n+\n ckpt_path = modeling_configs.ckpt_path or modeling_configs.model_path\n state_dict_ = dict()\n try:", |
|
"training.git_sha1": "30a2ddc64f3ff333b1b8e256a17d5d4b1281672f", |
|
"training.gradient_accumulation_steps": 4, |
|
"training.learning_rate": 3e-05, |
|
"training.logging_steps": 1, |
|
"training.lr_scheduler_type": "constant_with_warmup", |
|
"training.max_grad_norm": 0.5, |
|
"training.max_length": 2048, |
|
"training.max_steps": -1, |
|
"training.num_train_epochs": 10, |
|
"training.optim": "adamw_torch_fused", |
|
"training.output_dir": "output", |
|
"training.overwrite_output_dir": true, |
|
"training.per_device_eval_batch_size": 1, |
|
"training.per_device_train_batch_size": 1, |
|
"training.project": "beagle", |
|
"training.report_to": "wandb", |
|
"training.resume_from_checkpoint": true, |
|
"training.resume_wandb_runid": "va0rbslv", |
|
"training.run_name": "hearty-river-234", |
|
"training.save_steps": 500, |
|
"training.save_strategy": "steps", |
|
"training.save_total_limit": 2, |
|
"training.save_vram": true, |
|
"training.seed": 42, |
|
"training.warmup_steps": 50 |
|
} |