Wilson Wongso
commited on
Commit
โข
a663308
1
Parent(s):
519e3ae
Initial commit
Browse files- README.md +134 -3
- added_tokens.json +1 -0
- all_results.json +15 -0
- config.json +107 -0
- eval_results.json +10 -0
- nohup.out +0 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
- run.sh +34 -0
- run_speech_recognition_ctc.py +829 -0
- runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/1643613501.488685/events.out.tfevents.1643613501.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.1 +3 -0
- runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/events.out.tfevents.1643613501.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.0 +3 -0
- runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/events.out.tfevents.1643727998.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.2 +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- train_results.json +8 -0
- trainer_state.json +2797 -0
- training_args.bin +3 -0
- vocab.json +1 -0
README.md
CHANGED
@@ -1,3 +1,134 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- automatic-speech-recognition
|
5 |
+
- kresnik/zeroth_korean
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- zeroth_korean_asr
|
9 |
+
model-index:
|
10 |
+
- name: ''
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
#
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the KRESNIK/ZEROTH_KOREAN - CLEAN dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2089
|
22 |
+
- Wer: 0.2954
|
23 |
+
- Cer: 0.0953
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 7.5e-05
|
43 |
+
- train_batch_size: 8
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_steps: 2000
|
51 |
+
- num_epochs: 50.0
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
58 |
+
| 19.7138 | 0.72 | 500 | 19.6427 | 1.0 | 1.0 |
|
59 |
+
| 4.8039 | 1.44 | 1000 | 4.7842 | 1.0 | 1.0 |
|
60 |
+
| 4.5619 | 2.16 | 1500 | 4.5608 | 0.9992 | 0.9598 |
|
61 |
+
| 4.254 | 2.88 | 2000 | 4.2729 | 0.9955 | 0.9063 |
|
62 |
+
| 4.1905 | 3.6 | 2500 | 4.2257 | 0.9903 | 0.8758 |
|
63 |
+
| 4.0683 | 4.32 | 3000 | 3.9294 | 0.9937 | 0.7911 |
|
64 |
+
| 3.486 | 5.04 | 3500 | 2.7045 | 1.0012 | 0.5934 |
|
65 |
+
| 2.946 | 5.75 | 4000 | 1.9691 | 0.9425 | 0.4634 |
|
66 |
+
| 2.634 | 6.47 | 4500 | 1.5212 | 0.8807 | 0.3850 |
|
67 |
+
| 2.4066 | 7.19 | 5000 | 1.2551 | 0.8177 | 0.3601 |
|
68 |
+
| 2.2651 | 7.91 | 5500 | 1.0423 | 0.7650 | 0.3039 |
|
69 |
+
| 2.1828 | 8.63 | 6000 | 0.9599 | 0.7273 | 0.3106 |
|
70 |
+
| 2.1023 | 9.35 | 6500 | 0.9482 | 0.7161 | 0.3063 |
|
71 |
+
| 2.0536 | 10.07 | 7000 | 0.8242 | 0.6767 | 0.2860 |
|
72 |
+
| 1.9803 | 10.79 | 7500 | 0.7643 | 0.6563 | 0.2637 |
|
73 |
+
| 1.9468 | 11.51 | 8000 | 0.7319 | 0.6441 | 0.2505 |
|
74 |
+
| 1.9178 | 12.23 | 8500 | 0.6937 | 0.6320 | 0.2489 |
|
75 |
+
| 1.8515 | 12.95 | 9000 | 0.6443 | 0.6053 | 0.2196 |
|
76 |
+
| 1.8083 | 13.67 | 9500 | 0.6286 | 0.6122 | 0.2148 |
|
77 |
+
| 1.819 | 14.39 | 10000 | 0.6015 | 0.5986 | 0.2074 |
|
78 |
+
| 1.7684 | 15.11 | 10500 | 0.5682 | 0.5741 | 0.1982 |
|
79 |
+
| 1.7195 | 15.83 | 11000 | 0.5385 | 0.5592 | 0.2007 |
|
80 |
+
| 1.7044 | 16.55 | 11500 | 0.5362 | 0.5524 | 0.2097 |
|
81 |
+
| 1.6879 | 17.27 | 12000 | 0.5119 | 0.5489 | 0.2083 |
|
82 |
+
| 1.656 | 17.98 | 12500 | 0.4990 | 0.5362 | 0.1968 |
|
83 |
+
| 1.6122 | 18.7 | 13000 | 0.4561 | 0.5092 | 0.1900 |
|
84 |
+
| 1.5919 | 19.42 | 13500 | 0.4778 | 0.5225 | 0.1975 |
|
85 |
+
| 1.5896 | 20.14 | 14000 | 0.4563 | 0.5098 | 0.1859 |
|
86 |
+
| 1.5589 | 20.86 | 14500 | 0.4362 | 0.4940 | 0.1725 |
|
87 |
+
| 1.5353 | 21.58 | 15000 | 0.4140 | 0.4826 | 0.1580 |
|
88 |
+
| 1.5441 | 22.3 | 15500 | 0.4031 | 0.4742 | 0.1550 |
|
89 |
+
| 1.5116 | 23.02 | 16000 | 0.3916 | 0.4748 | 0.1545 |
|
90 |
+
| 1.4731 | 23.74 | 16500 | 0.3841 | 0.4810 | 0.1542 |
|
91 |
+
| 1.4647 | 24.46 | 17000 | 0.3752 | 0.4524 | 0.1475 |
|
92 |
+
| 1.4328 | 25.18 | 17500 | 0.3587 | 0.4476 | 0.1461 |
|
93 |
+
| 1.4129 | 25.9 | 18000 | 0.3429 | 0.4242 | 0.1366 |
|
94 |
+
| 1.4062 | 26.62 | 18500 | 0.3450 | 0.4251 | 0.1355 |
|
95 |
+
| 1.3928 | 27.34 | 19000 | 0.3297 | 0.4145 | 0.1322 |
|
96 |
+
| 1.3906 | 28.06 | 19500 | 0.3210 | 0.4185 | 0.1336 |
|
97 |
+
| 1.358 | 28.78 | 20000 | 0.3131 | 0.3970 | 0.1275 |
|
98 |
+
| 1.3445 | 29.5 | 20500 | 0.3069 | 0.3920 | 0.1276 |
|
99 |
+
| 1.3159 | 30.22 | 21000 | 0.3035 | 0.3961 | 0.1255 |
|
100 |
+
| 1.3044 | 30.93 | 21500 | 0.2952 | 0.3854 | 0.1242 |
|
101 |
+
| 1.3034 | 31.65 | 22000 | 0.2966 | 0.3772 | 0.1227 |
|
102 |
+
| 1.2963 | 32.37 | 22500 | 0.2844 | 0.3706 | 0.1208 |
|
103 |
+
| 1.2765 | 33.09 | 23000 | 0.2841 | 0.3567 | 0.1173 |
|
104 |
+
| 1.2438 | 33.81 | 23500 | 0.2734 | 0.3552 | 0.1137 |
|
105 |
+
| 1.2487 | 34.53 | 24000 | 0.2703 | 0.3502 | 0.1118 |
|
106 |
+
| 1.2249 | 35.25 | 24500 | 0.2650 | 0.3484 | 0.1142 |
|
107 |
+
| 1.2229 | 35.97 | 25000 | 0.2584 | 0.3374 | 0.1097 |
|
108 |
+
| 1.2374 | 36.69 | 25500 | 0.2568 | 0.3337 | 0.1095 |
|
109 |
+
| 1.2153 | 37.41 | 26000 | 0.2494 | 0.3327 | 0.1071 |
|
110 |
+
| 1.1925 | 38.13 | 26500 | 0.2518 | 0.3366 | 0.1077 |
|
111 |
+
| 1.1908 | 38.85 | 27000 | 0.2437 | 0.3272 | 0.1057 |
|
112 |
+
| 1.1858 | 39.57 | 27500 | 0.2396 | 0.3265 | 0.1044 |
|
113 |
+
| 1.1808 | 40.29 | 28000 | 0.2373 | 0.3156 | 0.1028 |
|
114 |
+
| 1.1842 | 41.01 | 28500 | 0.2356 | 0.3152 | 0.1026 |
|
115 |
+
| 1.1668 | 41.73 | 29000 | 0.2319 | 0.3188 | 0.1025 |
|
116 |
+
| 1.1448 | 42.45 | 29500 | 0.2293 | 0.3099 | 0.0995 |
|
117 |
+
| 1.1327 | 43.17 | 30000 | 0.2265 | 0.3047 | 0.0979 |
|
118 |
+
| 1.1307 | 43.88 | 30500 | 0.2222 | 0.3078 | 0.0989 |
|
119 |
+
| 1.1419 | 44.6 | 31000 | 0.2215 | 0.3038 | 0.0981 |
|
120 |
+
| 1.1231 | 45.32 | 31500 | 0.2193 | 0.3013 | 0.0972 |
|
121 |
+
| 1.139 | 46.04 | 32000 | 0.2162 | 0.3007 | 0.0968 |
|
122 |
+
| 1.1114 | 46.76 | 32500 | 0.2122 | 0.2982 | 0.0960 |
|
123 |
+
| 1.111 | 47.48 | 33000 | 0.2125 | 0.2946 | 0.0948 |
|
124 |
+
| 1.0982 | 48.2 | 33500 | 0.2099 | 0.2957 | 0.0953 |
|
125 |
+
| 1.109 | 48.92 | 34000 | 0.2092 | 0.2955 | 0.0955 |
|
126 |
+
| 1.0905 | 49.64 | 34500 | 0.2088 | 0.2954 | 0.0953 |
|
127 |
+
|
128 |
+
|
129 |
+
### Framework versions
|
130 |
+
|
131 |
+
- Transformers 4.17.0.dev0
|
132 |
+
- Pytorch 1.10.2+cu102
|
133 |
+
- Datasets 1.18.2.dev0
|
134 |
+
- Tokenizers 0.10.3
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 1205, "</s>": 1206}
|
all_results.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"eval_cer": 0.09533931664304834,
|
4 |
+
"eval_loss": 0.20887407660484314,
|
5 |
+
"eval_runtime": 41.7123,
|
6 |
+
"eval_samples": 456,
|
7 |
+
"eval_samples_per_second": 10.932,
|
8 |
+
"eval_steps_per_second": 1.367,
|
9 |
+
"eval_wer": 0.2953790395650861,
|
10 |
+
"train_loss": 2.2316733406121783,
|
11 |
+
"train_runtime": 114311.9751,
|
12 |
+
"train_samples": 22262,
|
13 |
+
"train_samples_per_second": 9.737,
|
14 |
+
"train_steps_per_second": 0.304
|
15 |
+
}
|
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.0,
|
57 |
+
"hidden_size": 1024,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 4096,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.0,
|
62 |
+
"mask_feature_length": 64,
|
63 |
+
"mask_feature_min_masks": 0,
|
64 |
+
"mask_feature_prob": 0.25,
|
65 |
+
"mask_time_length": 10,
|
66 |
+
"mask_time_min_masks": 2,
|
67 |
+
"mask_time_prob": 0.75,
|
68 |
+
"model_type": "wav2vec2",
|
69 |
+
"num_adapter_layers": 3,
|
70 |
+
"num_attention_heads": 16,
|
71 |
+
"num_codevector_groups": 2,
|
72 |
+
"num_codevectors_per_group": 320,
|
73 |
+
"num_conv_pos_embedding_groups": 16,
|
74 |
+
"num_conv_pos_embeddings": 128,
|
75 |
+
"num_feat_extract_layers": 7,
|
76 |
+
"num_hidden_layers": 24,
|
77 |
+
"num_negatives": 100,
|
78 |
+
"output_hidden_size": 1024,
|
79 |
+
"pad_token_id": 1204,
|
80 |
+
"proj_codevector_dim": 768,
|
81 |
+
"tdnn_dilation": [
|
82 |
+
1,
|
83 |
+
2,
|
84 |
+
3,
|
85 |
+
1,
|
86 |
+
1
|
87 |
+
],
|
88 |
+
"tdnn_dim": [
|
89 |
+
512,
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
1500
|
94 |
+
],
|
95 |
+
"tdnn_kernel": [
|
96 |
+
5,
|
97 |
+
3,
|
98 |
+
3,
|
99 |
+
1,
|
100 |
+
1
|
101 |
+
],
|
102 |
+
"torch_dtype": "float32",
|
103 |
+
"transformers_version": "4.17.0.dev0",
|
104 |
+
"use_weighted_layer_sum": false,
|
105 |
+
"vocab_size": 1207,
|
106 |
+
"xvector_output_dim": 512
|
107 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"eval_cer": 0.09533931664304834,
|
4 |
+
"eval_loss": 0.20887407660484314,
|
5 |
+
"eval_runtime": 41.7123,
|
6 |
+
"eval_samples": 456,
|
7 |
+
"eval_samples_per_second": 10.932,
|
8 |
+
"eval_steps_per_second": 1.367,
|
9 |
+
"eval_wer": 0.2953790395650861
|
10 |
+
}
|
nohup.out
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bc8f067dea3b8b2f7be8445f2df742139fa6fedc42dc96052e1f03903ed3434
|
3 |
+
size 1266872433
|
run.sh
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="kresnik/zeroth_korean" \
|
3 |
+
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
|
4 |
+
--dataset_config_name="clean" \
|
5 |
+
--output_dir="./" \
|
6 |
+
--overwrite_output_dir \
|
7 |
+
--num_train_epochs="50" \
|
8 |
+
--per_device_train_batch_size="8" \
|
9 |
+
--per_device_eval_batch_size="8" \
|
10 |
+
--gradient_accumulation_steps="4" \
|
11 |
+
--learning_rate="7.5e-5" \
|
12 |
+
--warmup_steps="2000" \
|
13 |
+
--length_column_name="input_length" \
|
14 |
+
--evaluation_strategy="steps" \
|
15 |
+
--text_column_name="text" \
|
16 |
+
--chars_to_ignore , ? . ! \- \; \: \" โ % โ โ ๏ฟฝ โ โ โฆ โ \
|
17 |
+
--save_steps="500" \
|
18 |
+
--eval_steps="500" \
|
19 |
+
--logging_steps="100" \
|
20 |
+
--layerdrop="0.0" \
|
21 |
+
--activation_dropout="0.1" \
|
22 |
+
--save_total_limit="3" \
|
23 |
+
--freeze_feature_encoder \
|
24 |
+
--feat_proj_dropout="0.0" \
|
25 |
+
--mask_time_prob="0.75" \
|
26 |
+
--mask_time_length="10" \
|
27 |
+
--mask_feature_prob="0.25" \
|
28 |
+
--mask_feature_length="64" \
|
29 |
+
--gradient_checkpointing \
|
30 |
+
--use_auth_token \
|
31 |
+
--fp16 \
|
32 |
+
--group_by_length \
|
33 |
+
--do_train --do_eval \
|
34 |
+
--push_to_hub
|
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,829 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a ๐ค Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoProcessor,
|
39 |
+
AutoTokenizer,
|
40 |
+
HfArgumentParser,
|
41 |
+
Trainer,
|
42 |
+
TrainingArguments,
|
43 |
+
Wav2Vec2Processor,
|
44 |
+
set_seed,
|
45 |
+
)
|
46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
47 |
+
from transformers.utils import check_min_version
|
48 |
+
from transformers.utils.versions import require_version
|
49 |
+
|
50 |
+
|
51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
52 |
+
check_min_version("4.17.0.dev0")
|
53 |
+
|
54 |
+
require_version(
|
55 |
+
"datasets>=1.13.3",
|
56 |
+
"To fix: pip install -r examples/pytorch/text-classification/requirements.txt",
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.getLogger(__name__)
|
61 |
+
|
62 |
+
|
63 |
+
def list_field(default=None, metadata=None):
|
64 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
65 |
+
|
66 |
+
|
67 |
+
@dataclass
|
68 |
+
class ModelArguments:
|
69 |
+
"""
|
70 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
71 |
+
"""
|
72 |
+
|
73 |
+
model_name_or_path: str = field(
|
74 |
+
metadata={
|
75 |
+
"help": "Path to pretrained model or model identifier from huggingface.co/models"
|
76 |
+
}
|
77 |
+
)
|
78 |
+
tokenizer_name_or_path: Optional[str] = field(
|
79 |
+
default=None,
|
80 |
+
metadata={
|
81 |
+
"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"
|
82 |
+
},
|
83 |
+
)
|
84 |
+
cache_dir: Optional[str] = field(
|
85 |
+
default=None,
|
86 |
+
metadata={
|
87 |
+
"help": "Where do you want to store the pretrained models downloaded from huggingface.co"
|
88 |
+
},
|
89 |
+
)
|
90 |
+
freeze_feature_encoder: bool = field(
|
91 |
+
default=True,
|
92 |
+
metadata={"help": "Whether to freeze the feature encoder layers of the model."},
|
93 |
+
)
|
94 |
+
attention_dropout: float = field(
|
95 |
+
default=0.0,
|
96 |
+
metadata={"help": "The dropout ratio for the attention probabilities."},
|
97 |
+
)
|
98 |
+
activation_dropout: float = field(
|
99 |
+
default=0.0,
|
100 |
+
metadata={
|
101 |
+
"help": "The dropout ratio for activations inside the fully connected layer."
|
102 |
+
},
|
103 |
+
)
|
104 |
+
feat_proj_dropout: float = field(
|
105 |
+
default=0.0, metadata={"help": "The dropout ratio for the projected features."}
|
106 |
+
)
|
107 |
+
hidden_dropout: float = field(
|
108 |
+
default=0.0,
|
109 |
+
metadata={
|
110 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
111 |
+
},
|
112 |
+
)
|
113 |
+
final_dropout: float = field(
|
114 |
+
default=0.0,
|
115 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
116 |
+
)
|
117 |
+
mask_time_prob: float = field(
|
118 |
+
default=0.05,
|
119 |
+
metadata={
|
120 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
121 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
122 |
+
"vectors will be masked along the time axis."
|
123 |
+
},
|
124 |
+
)
|
125 |
+
mask_time_length: int = field(
|
126 |
+
default=10,
|
127 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
128 |
+
)
|
129 |
+
mask_feature_prob: float = field(
|
130 |
+
default=0.0,
|
131 |
+
metadata={
|
132 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
133 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
134 |
+
},
|
135 |
+
)
|
136 |
+
mask_feature_length: int = field(
|
137 |
+
default=10,
|
138 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
139 |
+
)
|
140 |
+
layerdrop: float = field(
|
141 |
+
default=0.0, metadata={"help": "The LayerDrop probability."}
|
142 |
+
)
|
143 |
+
ctc_loss_reduction: Optional[str] = field(
|
144 |
+
default="mean",
|
145 |
+
metadata={
|
146 |
+
"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."
|
147 |
+
},
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
@dataclass
|
152 |
+
class DataTrainingArguments:
|
153 |
+
"""
|
154 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
155 |
+
|
156 |
+
Using `HfArgumentParser` we can turn this class
|
157 |
+
into argparse arguments to be able to specify them on
|
158 |
+
the command line.
|
159 |
+
"""
|
160 |
+
|
161 |
+
dataset_name: str = field(
|
162 |
+
metadata={
|
163 |
+
"help": "The configuration name of the dataset to use (via the datasets library)."
|
164 |
+
}
|
165 |
+
)
|
166 |
+
dataset_config_name: str = field(
|
167 |
+
default=None,
|
168 |
+
metadata={
|
169 |
+
"help": "The configuration name of the dataset to use (via the datasets library)."
|
170 |
+
},
|
171 |
+
)
|
172 |
+
train_split_name: str = field(
|
173 |
+
default="train",
|
174 |
+
metadata={
|
175 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
176 |
+
},
|
177 |
+
)
|
178 |
+
eval_split_name: str = field(
|
179 |
+
default="test",
|
180 |
+
metadata={
|
181 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
|
182 |
+
},
|
183 |
+
)
|
184 |
+
audio_column_name: str = field(
|
185 |
+
default="audio",
|
186 |
+
metadata={
|
187 |
+
"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"
|
188 |
+
},
|
189 |
+
)
|
190 |
+
text_column_name: str = field(
|
191 |
+
default="text",
|
192 |
+
metadata={
|
193 |
+
"help": "The name of the dataset column containing the text data. Defaults to 'text'"
|
194 |
+
},
|
195 |
+
)
|
196 |
+
overwrite_cache: bool = field(
|
197 |
+
default=False,
|
198 |
+
metadata={"help": "Overwrite the cached preprocessed datasets or not."},
|
199 |
+
)
|
200 |
+
preprocessing_num_workers: Optional[int] = field(
|
201 |
+
default=None,
|
202 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
203 |
+
)
|
204 |
+
max_train_samples: Optional[int] = field(
|
205 |
+
default=None,
|
206 |
+
metadata={
|
207 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
208 |
+
"value if set."
|
209 |
+
},
|
210 |
+
)
|
211 |
+
max_eval_samples: Optional[int] = field(
|
212 |
+
default=None,
|
213 |
+
metadata={
|
214 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
215 |
+
"value if set."
|
216 |
+
},
|
217 |
+
)
|
218 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
219 |
+
default=None,
|
220 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
221 |
+
)
|
222 |
+
eval_metrics: List[str] = list_field(
|
223 |
+
default=["wer", "cer"],
|
224 |
+
metadata={
|
225 |
+
"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"
|
226 |
+
},
|
227 |
+
)
|
228 |
+
max_duration_in_seconds: float = field(
|
229 |
+
default=20.0,
|
230 |
+
metadata={
|
231 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
232 |
+
},
|
233 |
+
)
|
234 |
+
min_duration_in_seconds: float = field(
|
235 |
+
default=0.0,
|
236 |
+
metadata={
|
237 |
+
"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"
|
238 |
+
},
|
239 |
+
)
|
240 |
+
preprocessing_only: bool = field(
|
241 |
+
default=False,
|
242 |
+
metadata={
|
243 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
244 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
245 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
246 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
247 |
+
},
|
248 |
+
)
|
249 |
+
use_auth_token: bool = field(
|
250 |
+
default=False,
|
251 |
+
metadata={
|
252 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
253 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
254 |
+
},
|
255 |
+
)
|
256 |
+
unk_token: str = field(
|
257 |
+
default="[UNK]", metadata={"help": "The unk token for the tokenizer"},
|
258 |
+
)
|
259 |
+
pad_token: str = field(
|
260 |
+
default="[PAD]", metadata={"help": "The padding token for the tokenizer"},
|
261 |
+
)
|
262 |
+
word_delimiter_token: str = field(
|
263 |
+
default="|", metadata={"help": "The word delimiter token for the tokenizer"},
|
264 |
+
)
|
265 |
+
phoneme_language: Optional[str] = field(
|
266 |
+
default=None,
|
267 |
+
metadata={
|
268 |
+
"help": "The target language that should be used be"
|
269 |
+
" passed to the tokenizer for tokenization. Note that"
|
270 |
+
" this is only relevant if the model classifies the"
|
271 |
+
" input audio to a sequence of phoneme sequences."
|
272 |
+
},
|
273 |
+
)
|
274 |
+
|
275 |
+
|
276 |
+
@dataclass
|
277 |
+
class DataCollatorCTCWithPadding:
|
278 |
+
"""
|
279 |
+
Data collator that will dynamically pad the inputs received.
|
280 |
+
Args:
|
281 |
+
processor (:class:`~transformers.AutoProcessor`)
|
282 |
+
The processor used for proccessing the data.
|
283 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
284 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
285 |
+
among:
|
286 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
287 |
+
sequence if provided).
|
288 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
289 |
+
maximum acceptable input length for the model if that argument is not provided.
|
290 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
291 |
+
different lengths).
|
292 |
+
max_length (:obj:`int`, `optional`):
|
293 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
294 |
+
max_length_labels (:obj:`int`, `optional`):
|
295 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
296 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
297 |
+
If set will pad the sequence to a multiple of the provided value.
|
298 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
299 |
+
7.5 (Volta).
|
300 |
+
"""
|
301 |
+
|
302 |
+
processor: AutoProcessor
|
303 |
+
padding: Union[bool, str] = "longest"
|
304 |
+
pad_to_multiple_of: Optional[int] = None
|
305 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
306 |
+
|
307 |
+
def __call__(
|
308 |
+
self, features: List[Dict[str, Union[List[int], torch.Tensor]]]
|
309 |
+
) -> Dict[str, torch.Tensor]:
|
310 |
+
# split inputs and labels since they have to be of different lenghts and need
|
311 |
+
# different padding methods
|
312 |
+
input_features = [
|
313 |
+
{"input_values": feature["input_values"]} for feature in features
|
314 |
+
]
|
315 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
316 |
+
|
317 |
+
batch = self.processor.pad(
|
318 |
+
input_features,
|
319 |
+
padding=self.padding,
|
320 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
321 |
+
return_tensors="pt",
|
322 |
+
)
|
323 |
+
|
324 |
+
with self.processor.as_target_processor():
|
325 |
+
labels_batch = self.processor.pad(
|
326 |
+
label_features,
|
327 |
+
padding=self.padding,
|
328 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
329 |
+
return_tensors="pt",
|
330 |
+
)
|
331 |
+
|
332 |
+
# replace padding with -100 to ignore loss correctly
|
333 |
+
labels = labels_batch["input_ids"].masked_fill(
|
334 |
+
labels_batch.attention_mask.ne(1), -100
|
335 |
+
)
|
336 |
+
|
337 |
+
batch["labels"] = labels
|
338 |
+
|
339 |
+
return batch
|
340 |
+
|
341 |
+
|
342 |
+
def create_vocabulary_from_data(
|
343 |
+
datasets: DatasetDict,
|
344 |
+
word_delimiter_token: Optional[str] = None,
|
345 |
+
unk_token: Optional[str] = None,
|
346 |
+
pad_token: Optional[str] = None,
|
347 |
+
):
|
348 |
+
# Given training and test labels create vocabulary
|
349 |
+
def extract_all_chars(batch):
|
350 |
+
all_text = " ".join(batch["target_text"])
|
351 |
+
vocab = list(set(all_text))
|
352 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
353 |
+
|
354 |
+
vocabs = datasets.map(
|
355 |
+
extract_all_chars,
|
356 |
+
batched=True,
|
357 |
+
batch_size=-1,
|
358 |
+
keep_in_memory=True,
|
359 |
+
remove_columns=datasets["train"].column_names,
|
360 |
+
)
|
361 |
+
|
362 |
+
# take union of all unique characters in each dataset
|
363 |
+
vocab_set = functools.reduce(
|
364 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]),
|
365 |
+
vocabs.values(),
|
366 |
+
)
|
367 |
+
|
368 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
369 |
+
|
370 |
+
# replace white space with delimiter token
|
371 |
+
if word_delimiter_token is not None:
|
372 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
373 |
+
del vocab_dict[" "]
|
374 |
+
|
375 |
+
# add unk and pad token
|
376 |
+
if unk_token is not None:
|
377 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
378 |
+
|
379 |
+
if pad_token is not None:
|
380 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
381 |
+
|
382 |
+
return vocab_dict
|
383 |
+
|
384 |
+
|
385 |
+
def main():
|
386 |
+
# See all possible arguments in src/transformers/training_args.py
|
387 |
+
# or by passing the --help flag to this script.
|
388 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
389 |
+
|
390 |
+
parser = HfArgumentParser(
|
391 |
+
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
392 |
+
)
|
393 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
394 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
395 |
+
# let's parse it to get our arguments.
|
396 |
+
model_args, data_args, training_args = parser.parse_json_file(
|
397 |
+
json_file=os.path.abspath(sys.argv[1])
|
398 |
+
)
|
399 |
+
else:
|
400 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
401 |
+
|
402 |
+
# Detecting last checkpoint.
|
403 |
+
last_checkpoint = None
|
404 |
+
if (
|
405 |
+
os.path.isdir(training_args.output_dir)
|
406 |
+
and training_args.do_train
|
407 |
+
and not training_args.overwrite_output_dir
|
408 |
+
):
|
409 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
410 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
411 |
+
raise ValueError(
|
412 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
413 |
+
"Use --overwrite_output_dir to overcome."
|
414 |
+
)
|
415 |
+
elif last_checkpoint is not None:
|
416 |
+
logger.info(
|
417 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
418 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
419 |
+
)
|
420 |
+
|
421 |
+
# Setup logging
|
422 |
+
logging.basicConfig(
|
423 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
424 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
425 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
426 |
+
)
|
427 |
+
logger.setLevel(
|
428 |
+
logging.INFO if is_main_process(training_args.local_rank) else logging.WARN
|
429 |
+
)
|
430 |
+
|
431 |
+
# Log on each process the small summary:
|
432 |
+
logger.warning(
|
433 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
434 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
435 |
+
)
|
436 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
437 |
+
if is_main_process(training_args.local_rank):
|
438 |
+
transformers.utils.logging.set_verbosity_info()
|
439 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
440 |
+
|
441 |
+
# Set seed before initializing model.
|
442 |
+
set_seed(training_args.seed)
|
443 |
+
|
444 |
+
# 1. First, let's load the dataset
|
445 |
+
raw_datasets = DatasetDict()
|
446 |
+
|
447 |
+
if training_args.do_train:
|
448 |
+
raw_datasets["train"] = load_dataset(
|
449 |
+
data_args.dataset_name,
|
450 |
+
data_args.dataset_config_name,
|
451 |
+
split=data_args.train_split_name,
|
452 |
+
use_auth_token=data_args.use_auth_token,
|
453 |
+
)
|
454 |
+
|
455 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
456 |
+
raise ValueError(
|
457 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
458 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
459 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
460 |
+
)
|
461 |
+
|
462 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
463 |
+
raise ValueError(
|
464 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
465 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
466 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
467 |
+
)
|
468 |
+
|
469 |
+
if data_args.max_train_samples is not None:
|
470 |
+
raw_datasets["train"] = raw_datasets["train"].select(
|
471 |
+
range(data_args.max_train_samples)
|
472 |
+
)
|
473 |
+
|
474 |
+
if training_args.do_eval:
|
475 |
+
raw_datasets["eval"] = load_dataset(
|
476 |
+
data_args.dataset_name,
|
477 |
+
data_args.dataset_config_name,
|
478 |
+
split=data_args.eval_split_name,
|
479 |
+
use_auth_token=data_args.use_auth_token,
|
480 |
+
)
|
481 |
+
|
482 |
+
if data_args.max_eval_samples is not None:
|
483 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(
|
484 |
+
range(data_args.max_eval_samples)
|
485 |
+
)
|
486 |
+
|
487 |
+
# 2. We remove some special characters from the datasets
|
488 |
+
# that make training complicated and do not help in transcribing the speech
|
489 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
490 |
+
# that could be easily picked up by the model
|
491 |
+
chars_to_ignore_regex = (
|
492 |
+
f'[{"".join(data_args.chars_to_ignore)}]'
|
493 |
+
if data_args.chars_to_ignore is not None
|
494 |
+
else None
|
495 |
+
)
|
496 |
+
text_column_name = data_args.text_column_name
|
497 |
+
|
498 |
+
def remove_special_characters(batch):
|
499 |
+
if chars_to_ignore_regex is not None:
|
500 |
+
batch["target_text"] = (
|
501 |
+
re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
502 |
+
)
|
503 |
+
else:
|
504 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
505 |
+
return batch
|
506 |
+
|
507 |
+
with training_args.main_process_first(
|
508 |
+
desc="dataset map special characters removal"
|
509 |
+
):
|
510 |
+
raw_datasets = raw_datasets.map(
|
511 |
+
remove_special_characters,
|
512 |
+
remove_columns=[text_column_name],
|
513 |
+
desc="remove special characters from datasets",
|
514 |
+
)
|
515 |
+
|
516 |
+
# save special tokens for tokenizer
|
517 |
+
word_delimiter_token = data_args.word_delimiter_token
|
518 |
+
unk_token = data_args.unk_token
|
519 |
+
pad_token = data_args.pad_token
|
520 |
+
|
521 |
+
# 3. Next, let's load the config as we might need it to create
|
522 |
+
# the tokenizer
|
523 |
+
# load config
|
524 |
+
config = AutoConfig.from_pretrained(
|
525 |
+
model_args.model_name_or_path,
|
526 |
+
cache_dir=model_args.cache_dir,
|
527 |
+
use_auth_token=data_args.use_auth_token,
|
528 |
+
)
|
529 |
+
|
530 |
+
# 4. Next, if no tokenizer file is defined,
|
531 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
532 |
+
# the training and evaluation datasets
|
533 |
+
# We need to make sure that only first rank saves vocabulary
|
534 |
+
# make sure all processes wait until vocab is created
|
535 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
536 |
+
tokenizer_kwargs = {}
|
537 |
+
if tokenizer_name_or_path is None:
|
538 |
+
# save vocab in training output dir
|
539 |
+
tokenizer_name_or_path = training_args.output_dir
|
540 |
+
|
541 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
542 |
+
|
543 |
+
with training_args.main_process_first():
|
544 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
545 |
+
os.remove(vocab_file)
|
546 |
+
|
547 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
548 |
+
if not os.path.isfile(vocab_file):
|
549 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
550 |
+
vocab_dict = create_vocabulary_from_data(
|
551 |
+
raw_datasets,
|
552 |
+
word_delimiter_token=word_delimiter_token,
|
553 |
+
unk_token=unk_token,
|
554 |
+
pad_token=pad_token,
|
555 |
+
)
|
556 |
+
|
557 |
+
# save vocab dict to be loaded into tokenizer
|
558 |
+
with open(vocab_file, "w") as file:
|
559 |
+
json.dump(vocab_dict, file)
|
560 |
+
|
561 |
+
# if tokenizer has just been created
|
562 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
563 |
+
tokenizer_kwargs = {
|
564 |
+
"config": config if config.tokenizer_class is not None else None,
|
565 |
+
"tokenizer_type": config.model_type
|
566 |
+
if config.tokenizer_class is None
|
567 |
+
else None,
|
568 |
+
"unk_token": unk_token,
|
569 |
+
"pad_token": pad_token,
|
570 |
+
"word_delimiter_token": word_delimiter_token,
|
571 |
+
}
|
572 |
+
|
573 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
574 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
575 |
+
# one local process can concurrently download model & vocab.
|
576 |
+
|
577 |
+
# load feature_extractor and tokenizer
|
578 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
579 |
+
tokenizer_name_or_path,
|
580 |
+
use_auth_token=data_args.use_auth_token,
|
581 |
+
**tokenizer_kwargs,
|
582 |
+
)
|
583 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
584 |
+
model_args.model_name_or_path,
|
585 |
+
cache_dir=model_args.cache_dir,
|
586 |
+
use_auth_token=data_args.use_auth_token,
|
587 |
+
)
|
588 |
+
|
589 |
+
# adapt config
|
590 |
+
config.update(
|
591 |
+
{
|
592 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
593 |
+
"attention_dropout": model_args.attention_dropout,
|
594 |
+
"hidden_dropout": model_args.hidden_dropout,
|
595 |
+
"final_dropout": model_args.final_dropout,
|
596 |
+
"mask_time_prob": model_args.mask_time_prob,
|
597 |
+
"mask_time_length": model_args.mask_time_length,
|
598 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
599 |
+
"mask_feature_length": model_args.mask_feature_length,
|
600 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
601 |
+
"layerdrop": model_args.layerdrop,
|
602 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
603 |
+
"pad_token_id": tokenizer.pad_token_id,
|
604 |
+
"vocab_size": len(tokenizer),
|
605 |
+
"activation_dropout": model_args.activation_dropout,
|
606 |
+
}
|
607 |
+
)
|
608 |
+
|
609 |
+
# create model
|
610 |
+
model = AutoModelForCTC.from_pretrained(
|
611 |
+
model_args.model_name_or_path,
|
612 |
+
cache_dir=model_args.cache_dir,
|
613 |
+
config=config,
|
614 |
+
use_auth_token=data_args.use_auth_token,
|
615 |
+
)
|
616 |
+
|
617 |
+
# freeze encoder
|
618 |
+
if model_args.freeze_feature_encoder:
|
619 |
+
model.freeze_feature_encoder()
|
620 |
+
|
621 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
622 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
623 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
624 |
+
# via the `feature_extractor`
|
625 |
+
|
626 |
+
# make sure that dataset decodes audio with correct sampling rate
|
627 |
+
dataset_sampling_rate = (
|
628 |
+
next(iter(raw_datasets.values()))
|
629 |
+
.features[data_args.audio_column_name]
|
630 |
+
.sampling_rate
|
631 |
+
)
|
632 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
633 |
+
raw_datasets = raw_datasets.cast_column(
|
634 |
+
data_args.audio_column_name,
|
635 |
+
datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
|
636 |
+
)
|
637 |
+
|
638 |
+
# derive max & min input length for sample rate & max duration
|
639 |
+
max_input_length = (
|
640 |
+
data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
641 |
+
)
|
642 |
+
min_input_length = (
|
643 |
+
data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
644 |
+
)
|
645 |
+
audio_column_name = data_args.audio_column_name
|
646 |
+
num_workers = data_args.preprocessing_num_workers
|
647 |
+
|
648 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
649 |
+
phoneme_language = data_args.phoneme_language
|
650 |
+
|
651 |
+
# Preprocessing the datasets.
|
652 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
653 |
+
def prepare_dataset(batch):
|
654 |
+
# load audio
|
655 |
+
sample = batch[audio_column_name]
|
656 |
+
|
657 |
+
inputs = feature_extractor(
|
658 |
+
sample["array"], sampling_rate=sample["sampling_rate"]
|
659 |
+
)
|
660 |
+
batch["input_values"] = inputs.input_values[0]
|
661 |
+
batch["input_length"] = len(batch["input_values"])
|
662 |
+
|
663 |
+
# encode targets
|
664 |
+
additional_kwargs = {}
|
665 |
+
if phoneme_language is not None:
|
666 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
667 |
+
|
668 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
669 |
+
return batch
|
670 |
+
|
671 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
672 |
+
vectorized_datasets = raw_datasets.map(
|
673 |
+
prepare_dataset,
|
674 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
675 |
+
num_proc=num_workers,
|
676 |
+
desc="preprocess datasets",
|
677 |
+
)
|
678 |
+
|
679 |
+
def is_audio_in_length_range(length):
|
680 |
+
return length > min_input_length and length < max_input_length
|
681 |
+
|
682 |
+
# filter data that is shorter than min_input_length
|
683 |
+
vectorized_datasets = vectorized_datasets.filter(
|
684 |
+
is_audio_in_length_range,
|
685 |
+
num_proc=num_workers,
|
686 |
+
input_columns=["input_length"],
|
687 |
+
)
|
688 |
+
|
689 |
+
# 7. Next, we can prepare the training.
|
690 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
691 |
+
# instantiate a data collator and the trainer
|
692 |
+
|
693 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
694 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
695 |
+
|
696 |
+
# for large datasets it is advised to run the preprocessing on a
|
697 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
698 |
+
# be a timeout when running the script in distributed mode.
|
699 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
700 |
+
# cached dataset
|
701 |
+
if data_args.preprocessing_only:
|
702 |
+
logger.info(
|
703 |
+
f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}"
|
704 |
+
)
|
705 |
+
return
|
706 |
+
|
707 |
+
def compute_metrics(pred):
|
708 |
+
pred_logits = pred.predictions
|
709 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
710 |
+
|
711 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
712 |
+
|
713 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
714 |
+
# we do not want to group tokens when computing the metrics
|
715 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
716 |
+
|
717 |
+
metrics = {
|
718 |
+
k: v.compute(predictions=pred_str, references=label_str)
|
719 |
+
for k, v in eval_metrics.items()
|
720 |
+
}
|
721 |
+
|
722 |
+
return metrics
|
723 |
+
|
724 |
+
# Now save everything to be able to create a single processor later
|
725 |
+
if is_main_process(training_args.local_rank):
|
726 |
+
# save feature extractor, tokenizer and config
|
727 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
728 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
729 |
+
config.save_pretrained(training_args.output_dir)
|
730 |
+
|
731 |
+
try:
|
732 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
733 |
+
except (OSError, KeyError):
|
734 |
+
warnings.warn(
|
735 |
+
"Loading a processor from a feature extractor config that does not"
|
736 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
737 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
738 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
739 |
+
FutureWarning,
|
740 |
+
)
|
741 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
742 |
+
|
743 |
+
# Instantiate custom data collator
|
744 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
745 |
+
|
746 |
+
# Initialize Trainer
|
747 |
+
trainer = Trainer(
|
748 |
+
model=model,
|
749 |
+
data_collator=data_collator,
|
750 |
+
args=training_args,
|
751 |
+
compute_metrics=compute_metrics,
|
752 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
753 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
754 |
+
tokenizer=feature_extractor,
|
755 |
+
)
|
756 |
+
|
757 |
+
# 8. Finally, we can start training
|
758 |
+
|
759 |
+
# Training
|
760 |
+
if training_args.do_train:
|
761 |
+
|
762 |
+
# use last checkpoint if exist
|
763 |
+
if last_checkpoint is not None:
|
764 |
+
checkpoint = last_checkpoint
|
765 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
766 |
+
checkpoint = model_args.model_name_or_path
|
767 |
+
else:
|
768 |
+
checkpoint = None
|
769 |
+
|
770 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
771 |
+
trainer.save_model()
|
772 |
+
|
773 |
+
metrics = train_result.metrics
|
774 |
+
max_train_samples = (
|
775 |
+
data_args.max_train_samples
|
776 |
+
if data_args.max_train_samples is not None
|
777 |
+
else len(vectorized_datasets["train"])
|
778 |
+
)
|
779 |
+
metrics["train_samples"] = min(
|
780 |
+
max_train_samples, len(vectorized_datasets["train"])
|
781 |
+
)
|
782 |
+
|
783 |
+
trainer.log_metrics("train", metrics)
|
784 |
+
trainer.save_metrics("train", metrics)
|
785 |
+
trainer.save_state()
|
786 |
+
|
787 |
+
# Evaluation
|
788 |
+
results = {}
|
789 |
+
if training_args.do_eval:
|
790 |
+
logger.info("*** Evaluate ***")
|
791 |
+
metrics = trainer.evaluate()
|
792 |
+
max_eval_samples = (
|
793 |
+
data_args.max_eval_samples
|
794 |
+
if data_args.max_eval_samples is not None
|
795 |
+
else len(vectorized_datasets["eval"])
|
796 |
+
)
|
797 |
+
metrics["eval_samples"] = min(
|
798 |
+
max_eval_samples, len(vectorized_datasets["eval"])
|
799 |
+
)
|
800 |
+
|
801 |
+
trainer.log_metrics("eval", metrics)
|
802 |
+
trainer.save_metrics("eval", metrics)
|
803 |
+
|
804 |
+
# Write model card and (optionally) push to hub
|
805 |
+
config_name = (
|
806 |
+
data_args.dataset_config_name
|
807 |
+
if data_args.dataset_config_name is not None
|
808 |
+
else "na"
|
809 |
+
)
|
810 |
+
kwargs = {
|
811 |
+
"finetuned_from": model_args.model_name_or_path,
|
812 |
+
"tasks": "speech-recognition",
|
813 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
814 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
815 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
816 |
+
}
|
817 |
+
if "common_voice" in data_args.dataset_name:
|
818 |
+
kwargs["language"] = config_name
|
819 |
+
|
820 |
+
if training_args.push_to_hub:
|
821 |
+
trainer.push_to_hub(**kwargs)
|
822 |
+
else:
|
823 |
+
trainer.create_model_card(**kwargs)
|
824 |
+
|
825 |
+
return results
|
826 |
+
|
827 |
+
|
828 |
+
if __name__ == "__main__":
|
829 |
+
main()
|
runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/1643613501.488685/events.out.tfevents.1643613501.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28a6ab5fcdee80fd31c69dc157696d3063a1cc27099a2452f6695c51cba48628
|
3 |
+
size 4753
|
runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/events.out.tfevents.1643613501.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e586cc74e2f42c18b87325dcb4cc447cd7318cc76addfa59195430faa1ea2ea5
|
3 |
+
size 85518
|
runs/Jan31_07-15-59_job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6/events.out.tfevents.1643727998.job-2c68f48a-2d5d-4013-9043-3f2cb25f3ff6.1151936.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fcf7744c50287e982c2028e14e51bc27110121c60f9a7d4ec7fc26a06f86232
|
3 |
+
size 412
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"train_loss": 2.2316733406121783,
|
4 |
+
"train_runtime": 114311.9751,
|
5 |
+
"train_samples": 22262,
|
6 |
+
"train_samples_per_second": 9.737,
|
7 |
+
"train_steps_per_second": 0.304
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2797 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 49.99892202659001,
|
5 |
+
"global_step": 34750,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.14,
|
12 |
+
"learning_rate": 3.675e-06,
|
13 |
+
"loss": 47.2908,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.29,
|
18 |
+
"learning_rate": 7.425e-06,
|
19 |
+
"loss": 33.9125,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.43,
|
24 |
+
"learning_rate": 1.1174999999999999e-05,
|
25 |
+
"loss": 26.6068,
|
26 |
+
"step": 300
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.57,
|
30 |
+
"learning_rate": 1.4925e-05,
|
31 |
+
"loss": 23.2775,
|
32 |
+
"step": 400
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.72,
|
36 |
+
"learning_rate": 1.8675e-05,
|
37 |
+
"loss": 19.7138,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.72,
|
42 |
+
"eval_cer": 1.0,
|
43 |
+
"eval_loss": 19.642736434936523,
|
44 |
+
"eval_runtime": 41.3907,
|
45 |
+
"eval_samples_per_second": 11.017,
|
46 |
+
"eval_steps_per_second": 1.377,
|
47 |
+
"eval_wer": 1.0,
|
48 |
+
"step": 500
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 0.86,
|
52 |
+
"learning_rate": 2.2424999999999996e-05,
|
53 |
+
"loss": 15.7715,
|
54 |
+
"step": 600
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 1.01,
|
58 |
+
"learning_rate": 2.6174999999999996e-05,
|
59 |
+
"loss": 11.4061,
|
60 |
+
"step": 700
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 1.15,
|
64 |
+
"learning_rate": 2.9925e-05,
|
65 |
+
"loss": 7.4329,
|
66 |
+
"step": 800
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 1.29,
|
70 |
+
"learning_rate": 3.3675e-05,
|
71 |
+
"loss": 5.3081,
|
72 |
+
"step": 900
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 1.44,
|
76 |
+
"learning_rate": 3.7424999999999995e-05,
|
77 |
+
"loss": 4.8039,
|
78 |
+
"step": 1000
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 1.44,
|
82 |
+
"eval_cer": 1.0,
|
83 |
+
"eval_loss": 4.784187316894531,
|
84 |
+
"eval_runtime": 42.2256,
|
85 |
+
"eval_samples_per_second": 10.799,
|
86 |
+
"eval_steps_per_second": 1.35,
|
87 |
+
"eval_wer": 1.0,
|
88 |
+
"step": 1000
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 1.58,
|
92 |
+
"learning_rate": 4.1175e-05,
|
93 |
+
"loss": 4.762,
|
94 |
+
"step": 1100
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 1.73,
|
98 |
+
"learning_rate": 4.4924999999999994e-05,
|
99 |
+
"loss": 4.6928,
|
100 |
+
"step": 1200
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 1.87,
|
104 |
+
"learning_rate": 4.8675e-05,
|
105 |
+
"loss": 4.6292,
|
106 |
+
"step": 1300
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 2.01,
|
110 |
+
"learning_rate": 5.2424999999999994e-05,
|
111 |
+
"loss": 4.6321,
|
112 |
+
"step": 1400
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 2.16,
|
116 |
+
"learning_rate": 5.6175e-05,
|
117 |
+
"loss": 4.5619,
|
118 |
+
"step": 1500
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 2.16,
|
122 |
+
"eval_cer": 0.9598094788222327,
|
123 |
+
"eval_loss": 4.560794830322266,
|
124 |
+
"eval_runtime": 41.0352,
|
125 |
+
"eval_samples_per_second": 11.112,
|
126 |
+
"eval_steps_per_second": 1.389,
|
127 |
+
"eval_wer": 0.9992449411054062,
|
128 |
+
"step": 1500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 2.3,
|
132 |
+
"learning_rate": 5.9925e-05,
|
133 |
+
"loss": 4.4704,
|
134 |
+
"step": 1600
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 2.45,
|
138 |
+
"learning_rate": 6.367499999999999e-05,
|
139 |
+
"loss": 4.3806,
|
140 |
+
"step": 1700
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 2.59,
|
144 |
+
"learning_rate": 6.7425e-05,
|
145 |
+
"loss": 4.3092,
|
146 |
+
"step": 1800
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 2.73,
|
150 |
+
"learning_rate": 7.1175e-05,
|
151 |
+
"loss": 4.2794,
|
152 |
+
"step": 1900
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 2.88,
|
156 |
+
"learning_rate": 7.492499999999999e-05,
|
157 |
+
"loss": 4.254,
|
158 |
+
"step": 2000
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 2.88,
|
162 |
+
"eval_cer": 0.906274602424815,
|
163 |
+
"eval_loss": 4.272861003875732,
|
164 |
+
"eval_runtime": 40.8387,
|
165 |
+
"eval_samples_per_second": 11.166,
|
166 |
+
"eval_steps_per_second": 1.396,
|
167 |
+
"eval_wer": 0.9954696466324373,
|
168 |
+
"step": 2000
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 3.02,
|
172 |
+
"learning_rate": 7.477557251908395e-05,
|
173 |
+
"loss": 4.2616,
|
174 |
+
"step": 2100
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 3.17,
|
178 |
+
"learning_rate": 7.454656488549618e-05,
|
179 |
+
"loss": 4.2184,
|
180 |
+
"step": 2200
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 3.31,
|
184 |
+
"learning_rate": 7.43175572519084e-05,
|
185 |
+
"loss": 4.227,
|
186 |
+
"step": 2300
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 3.45,
|
190 |
+
"learning_rate": 7.408854961832061e-05,
|
191 |
+
"loss": 4.1985,
|
192 |
+
"step": 2400
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 3.6,
|
196 |
+
"learning_rate": 7.385954198473281e-05,
|
197 |
+
"loss": 4.1905,
|
198 |
+
"step": 2500
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 3.6,
|
202 |
+
"eval_cer": 0.8758463234136357,
|
203 |
+
"eval_loss": 4.225706100463867,
|
204 |
+
"eval_runtime": 40.6017,
|
205 |
+
"eval_samples_per_second": 11.231,
|
206 |
+
"eval_steps_per_second": 1.404,
|
207 |
+
"eval_wer": 0.9903352461491997,
|
208 |
+
"step": 2500
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 3.74,
|
212 |
+
"learning_rate": 7.36328244274809e-05,
|
213 |
+
"loss": 4.1873,
|
214 |
+
"step": 2600
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 3.88,
|
218 |
+
"learning_rate": 7.340381679389312e-05,
|
219 |
+
"loss": 4.1615,
|
220 |
+
"step": 2700
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 4.03,
|
224 |
+
"learning_rate": 7.317480916030534e-05,
|
225 |
+
"loss": 4.157,
|
226 |
+
"step": 2800
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 4.17,
|
230 |
+
"learning_rate": 7.294580152671756e-05,
|
231 |
+
"loss": 4.1124,
|
232 |
+
"step": 2900
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 4.32,
|
236 |
+
"learning_rate": 7.271679389312976e-05,
|
237 |
+
"loss": 4.0683,
|
238 |
+
"step": 3000
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"epoch": 4.32,
|
242 |
+
"eval_cer": 0.7911352542906629,
|
243 |
+
"eval_loss": 3.929443120956421,
|
244 |
+
"eval_runtime": 41.2715,
|
245 |
+
"eval_samples_per_second": 11.049,
|
246 |
+
"eval_steps_per_second": 1.381,
|
247 |
+
"eval_wer": 0.9936575052854123,
|
248 |
+
"step": 3000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 4.46,
|
252 |
+
"learning_rate": 7.248778625954197e-05,
|
253 |
+
"loss": 4.0704,
|
254 |
+
"step": 3100
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 4.6,
|
258 |
+
"learning_rate": 7.22587786259542e-05,
|
259 |
+
"loss": 3.9616,
|
260 |
+
"step": 3200
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 4.75,
|
264 |
+
"learning_rate": 7.202977099236641e-05,
|
265 |
+
"loss": 3.7798,
|
266 |
+
"step": 3300
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 4.89,
|
270 |
+
"learning_rate": 7.180076335877862e-05,
|
271 |
+
"loss": 3.6123,
|
272 |
+
"step": 3400
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 5.04,
|
276 |
+
"learning_rate": 7.15740458015267e-05,
|
277 |
+
"loss": 3.486,
|
278 |
+
"step": 3500
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 5.04,
|
282 |
+
"eval_cer": 0.5933711226578492,
|
283 |
+
"eval_loss": 2.704545497894287,
|
284 |
+
"eval_runtime": 40.8408,
|
285 |
+
"eval_samples_per_second": 11.165,
|
286 |
+
"eval_steps_per_second": 1.396,
|
287 |
+
"eval_wer": 1.0012080942313502,
|
288 |
+
"step": 3500
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 5.18,
|
292 |
+
"learning_rate": 7.134503816793892e-05,
|
293 |
+
"loss": 3.3283,
|
294 |
+
"step": 3600
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 5.32,
|
298 |
+
"learning_rate": 7.111603053435114e-05,
|
299 |
+
"loss": 3.2091,
|
300 |
+
"step": 3700
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 5.47,
|
304 |
+
"learning_rate": 7.088931297709923e-05,
|
305 |
+
"loss": 3.1158,
|
306 |
+
"step": 3800
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 5.61,
|
310 |
+
"learning_rate": 7.066030534351145e-05,
|
311 |
+
"loss": 2.9983,
|
312 |
+
"step": 3900
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 5.75,
|
316 |
+
"learning_rate": 7.043129770992365e-05,
|
317 |
+
"loss": 2.946,
|
318 |
+
"step": 4000
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 5.75,
|
322 |
+
"eval_cer": 0.4634309557549992,
|
323 |
+
"eval_loss": 1.9690674543380737,
|
324 |
+
"eval_runtime": 40.879,
|
325 |
+
"eval_samples_per_second": 11.155,
|
326 |
+
"eval_steps_per_second": 1.394,
|
327 |
+
"eval_wer": 0.942464512231954,
|
328 |
+
"step": 4000
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 5.9,
|
332 |
+
"learning_rate": 7.020229007633587e-05,
|
333 |
+
"loss": 2.8545,
|
334 |
+
"step": 4100
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"epoch": 6.04,
|
338 |
+
"learning_rate": 6.997328244274808e-05,
|
339 |
+
"loss": 2.8092,
|
340 |
+
"step": 4200
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 6.19,
|
344 |
+
"learning_rate": 6.97442748091603e-05,
|
345 |
+
"loss": 2.7229,
|
346 |
+
"step": 4300
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 6.33,
|
350 |
+
"learning_rate": 6.951526717557252e-05,
|
351 |
+
"loss": 2.7053,
|
352 |
+
"step": 4400
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 6.47,
|
356 |
+
"learning_rate": 6.928625954198472e-05,
|
357 |
+
"loss": 2.634,
|
358 |
+
"step": 4500
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"epoch": 6.47,
|
362 |
+
"eval_cer": 0.38501810738466385,
|
363 |
+
"eval_loss": 1.521231770515442,
|
364 |
+
"eval_runtime": 41.5435,
|
365 |
+
"eval_samples_per_second": 10.976,
|
366 |
+
"eval_steps_per_second": 1.372,
|
367 |
+
"eval_wer": 0.880700694654183,
|
368 |
+
"step": 4500
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 6.62,
|
372 |
+
"learning_rate": 6.905725190839693e-05,
|
373 |
+
"loss": 2.5996,
|
374 |
+
"step": 4600
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 6.76,
|
378 |
+
"learning_rate": 6.882824427480916e-05,
|
379 |
+
"loss": 2.5472,
|
380 |
+
"step": 4700
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 6.91,
|
384 |
+
"learning_rate": 6.859923664122137e-05,
|
385 |
+
"loss": 2.4959,
|
386 |
+
"step": 4800
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 7.05,
|
390 |
+
"learning_rate": 6.837022900763359e-05,
|
391 |
+
"loss": 2.4554,
|
392 |
+
"step": 4900
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 7.19,
|
396 |
+
"learning_rate": 6.814122137404579e-05,
|
397 |
+
"loss": 2.4066,
|
398 |
+
"step": 5000
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 7.19,
|
402 |
+
"eval_cer": 0.36014013541174617,
|
403 |
+
"eval_loss": 1.2550952434539795,
|
404 |
+
"eval_runtime": 41.0408,
|
405 |
+
"eval_samples_per_second": 11.111,
|
406 |
+
"eval_steps_per_second": 1.389,
|
407 |
+
"eval_wer": 0.8177287828450619,
|
408 |
+
"step": 5000
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 7.34,
|
412 |
+
"learning_rate": 6.791221374045801e-05,
|
413 |
+
"loss": 2.3768,
|
414 |
+
"step": 5100
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 7.48,
|
418 |
+
"learning_rate": 6.768320610687023e-05,
|
419 |
+
"loss": 2.3557,
|
420 |
+
"step": 5200
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 7.63,
|
424 |
+
"learning_rate": 6.745419847328244e-05,
|
425 |
+
"loss": 2.3109,
|
426 |
+
"step": 5300
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 7.77,
|
430 |
+
"learning_rate": 6.722519083969465e-05,
|
431 |
+
"loss": 2.2953,
|
432 |
+
"step": 5400
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 7.91,
|
436 |
+
"learning_rate": 6.699618320610687e-05,
|
437 |
+
"loss": 2.2651,
|
438 |
+
"step": 5500
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 7.91,
|
442 |
+
"eval_cer": 0.30392851519445757,
|
443 |
+
"eval_loss": 1.0423332452774048,
|
444 |
+
"eval_runtime": 40.9098,
|
445 |
+
"eval_samples_per_second": 11.146,
|
446 |
+
"eval_steps_per_second": 1.393,
|
447 |
+
"eval_wer": 0.7650256720024162,
|
448 |
+
"step": 5500
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 8.06,
|
452 |
+
"learning_rate": 6.676717557251908e-05,
|
453 |
+
"loss": 2.2589,
|
454 |
+
"step": 5600
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"epoch": 8.2,
|
458 |
+
"learning_rate": 6.654045801526718e-05,
|
459 |
+
"loss": 2.2122,
|
460 |
+
"step": 5700
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 8.34,
|
464 |
+
"learning_rate": 6.631145038167939e-05,
|
465 |
+
"loss": 2.2017,
|
466 |
+
"step": 5800
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 8.49,
|
470 |
+
"learning_rate": 6.60824427480916e-05,
|
471 |
+
"loss": 2.1814,
|
472 |
+
"step": 5900
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 8.63,
|
476 |
+
"learning_rate": 6.58534351145038e-05,
|
477 |
+
"loss": 2.1828,
|
478 |
+
"step": 6000
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 8.63,
|
482 |
+
"eval_cer": 0.3106203747441348,
|
483 |
+
"eval_loss": 0.9598844051361084,
|
484 |
+
"eval_runtime": 41.4743,
|
485 |
+
"eval_samples_per_second": 10.995,
|
486 |
+
"eval_steps_per_second": 1.374,
|
487 |
+
"eval_wer": 0.7272727272727273,
|
488 |
+
"step": 6000
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 8.78,
|
492 |
+
"learning_rate": 6.562442748091603e-05,
|
493 |
+
"loss": 2.1714,
|
494 |
+
"step": 6100
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 8.92,
|
498 |
+
"learning_rate": 6.539541984732824e-05,
|
499 |
+
"loss": 2.1422,
|
500 |
+
"step": 6200
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 9.06,
|
504 |
+
"learning_rate": 6.516641221374046e-05,
|
505 |
+
"loss": 2.1546,
|
506 |
+
"step": 6300
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 9.21,
|
510 |
+
"learning_rate": 6.493740458015267e-05,
|
511 |
+
"loss": 2.12,
|
512 |
+
"step": 6400
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 9.35,
|
516 |
+
"learning_rate": 6.470839694656488e-05,
|
517 |
+
"loss": 2.1023,
|
518 |
+
"step": 6500
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 9.35,
|
522 |
+
"eval_cer": 0.30632971185640057,
|
523 |
+
"eval_loss": 0.9481843113899231,
|
524 |
+
"eval_runtime": 41.1867,
|
525 |
+
"eval_samples_per_second": 11.072,
|
526 |
+
"eval_steps_per_second": 1.384,
|
527 |
+
"eval_wer": 0.7160978556327393,
|
528 |
+
"step": 6500
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 9.5,
|
532 |
+
"learning_rate": 6.44793893129771e-05,
|
533 |
+
"loss": 2.1104,
|
534 |
+
"step": 6600
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 9.64,
|
538 |
+
"learning_rate": 6.425038167938931e-05,
|
539 |
+
"loss": 2.0879,
|
540 |
+
"step": 6700
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"epoch": 9.78,
|
544 |
+
"learning_rate": 6.402137404580152e-05,
|
545 |
+
"loss": 2.0724,
|
546 |
+
"step": 6800
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 9.93,
|
550 |
+
"learning_rate": 6.379236641221374e-05,
|
551 |
+
"loss": 2.0622,
|
552 |
+
"step": 6900
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 10.07,
|
556 |
+
"learning_rate": 6.356335877862595e-05,
|
557 |
+
"loss": 2.0536,
|
558 |
+
"step": 7000
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 10.07,
|
562 |
+
"eval_cer": 0.28597858604944104,
|
563 |
+
"eval_loss": 0.8241907954216003,
|
564 |
+
"eval_runtime": 41.2837,
|
565 |
+
"eval_samples_per_second": 11.046,
|
566 |
+
"eval_steps_per_second": 1.381,
|
567 |
+
"eval_wer": 0.6766837813349441,
|
568 |
+
"step": 7000
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"epoch": 10.22,
|
572 |
+
"learning_rate": 6.333435114503816e-05,
|
573 |
+
"loss": 2.0258,
|
574 |
+
"step": 7100
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"epoch": 10.36,
|
578 |
+
"learning_rate": 6.310534351145038e-05,
|
579 |
+
"loss": 2.038,
|
580 |
+
"step": 7200
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 10.5,
|
584 |
+
"learning_rate": 6.287633587786259e-05,
|
585 |
+
"loss": 2.0093,
|
586 |
+
"step": 7300
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 10.65,
|
590 |
+
"learning_rate": 6.26473282442748e-05,
|
591 |
+
"loss": 1.9839,
|
592 |
+
"step": 7400
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 10.79,
|
596 |
+
"learning_rate": 6.241832061068702e-05,
|
597 |
+
"loss": 1.9803,
|
598 |
+
"step": 7500
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 10.79,
|
602 |
+
"eval_cer": 0.2636592662572823,
|
603 |
+
"eval_loss": 0.7643126845359802,
|
604 |
+
"eval_runtime": 41.3574,
|
605 |
+
"eval_samples_per_second": 11.026,
|
606 |
+
"eval_steps_per_second": 1.378,
|
607 |
+
"eval_wer": 0.6562971911809121,
|
608 |
+
"step": 7500
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 10.93,
|
612 |
+
"learning_rate": 6.218931297709923e-05,
|
613 |
+
"loss": 1.9704,
|
614 |
+
"step": 7600
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 11.08,
|
618 |
+
"learning_rate": 6.196030534351144e-05,
|
619 |
+
"loss": 1.9923,
|
620 |
+
"step": 7700
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 11.22,
|
624 |
+
"learning_rate": 6.173129770992366e-05,
|
625 |
+
"loss": 1.9549,
|
626 |
+
"step": 7800
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 11.37,
|
630 |
+
"learning_rate": 6.150229007633587e-05,
|
631 |
+
"loss": 1.9339,
|
632 |
+
"step": 7900
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 11.51,
|
636 |
+
"learning_rate": 6.127328244274808e-05,
|
637 |
+
"loss": 1.9468,
|
638 |
+
"step": 8000
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 11.51,
|
642 |
+
"eval_cer": 0.25051173043615177,
|
643 |
+
"eval_loss": 0.7318933606147766,
|
644 |
+
"eval_runtime": 40.8808,
|
645 |
+
"eval_samples_per_second": 11.154,
|
646 |
+
"eval_steps_per_second": 1.394,
|
647 |
+
"eval_wer": 0.644065237088493,
|
648 |
+
"step": 8000
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 11.65,
|
652 |
+
"learning_rate": 6.10442748091603e-05,
|
653 |
+
"loss": 1.9691,
|
654 |
+
"step": 8100
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 11.8,
|
658 |
+
"learning_rate": 6.081526717557252e-05,
|
659 |
+
"loss": 1.9845,
|
660 |
+
"step": 8200
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 11.94,
|
664 |
+
"learning_rate": 6.0586259541984725e-05,
|
665 |
+
"loss": 1.9561,
|
666 |
+
"step": 8300
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"epoch": 12.09,
|
670 |
+
"learning_rate": 6.035725190839694e-05,
|
671 |
+
"loss": 1.9486,
|
672 |
+
"step": 8400
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 12.23,
|
676 |
+
"learning_rate": 6.012824427480916e-05,
|
677 |
+
"loss": 1.9178,
|
678 |
+
"step": 8500
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"epoch": 12.23,
|
682 |
+
"eval_cer": 0.24893717524799244,
|
683 |
+
"eval_loss": 0.6936821937561035,
|
684 |
+
"eval_runtime": 41.1829,
|
685 |
+
"eval_samples_per_second": 11.073,
|
686 |
+
"eval_steps_per_second": 1.384,
|
687 |
+
"eval_wer": 0.6319842947749924,
|
688 |
+
"step": 8500
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 12.37,
|
692 |
+
"learning_rate": 5.989923664122137e-05,
|
693 |
+
"loss": 1.9133,
|
694 |
+
"step": 8600
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 12.52,
|
698 |
+
"learning_rate": 5.9670229007633586e-05,
|
699 |
+
"loss": 1.9327,
|
700 |
+
"step": 8700
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 12.66,
|
704 |
+
"learning_rate": 5.944122137404579e-05,
|
705 |
+
"loss": 1.8749,
|
706 |
+
"step": 8800
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 12.8,
|
710 |
+
"learning_rate": 5.9212213740458006e-05,
|
711 |
+
"loss": 1.8775,
|
712 |
+
"step": 8900
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 12.95,
|
716 |
+
"learning_rate": 5.8983206106870226e-05,
|
717 |
+
"loss": 1.8515,
|
718 |
+
"step": 9000
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 12.95,
|
722 |
+
"eval_cer": 0.21961108486852465,
|
723 |
+
"eval_loss": 0.6443303823471069,
|
724 |
+
"eval_runtime": 40.5279,
|
725 |
+
"eval_samples_per_second": 11.252,
|
726 |
+
"eval_steps_per_second": 1.406,
|
727 |
+
"eval_wer": 0.6052552099063727,
|
728 |
+
"step": 9000
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 13.09,
|
732 |
+
"learning_rate": 5.875419847328244e-05,
|
733 |
+
"loss": 1.8554,
|
734 |
+
"step": 9100
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 13.24,
|
738 |
+
"learning_rate": 5.852519083969465e-05,
|
739 |
+
"loss": 1.8568,
|
740 |
+
"step": 9200
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 13.38,
|
744 |
+
"learning_rate": 5.829618320610686e-05,
|
745 |
+
"loss": 1.8477,
|
746 |
+
"step": 9300
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 13.52,
|
750 |
+
"learning_rate": 5.806717557251908e-05,
|
751 |
+
"loss": 1.8328,
|
752 |
+
"step": 9400
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 13.67,
|
756 |
+
"learning_rate": 5.783816793893129e-05,
|
757 |
+
"loss": 1.8083,
|
758 |
+
"step": 9500
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 13.67,
|
762 |
+
"eval_cer": 0.21484805542434263,
|
763 |
+
"eval_loss": 0.6285760402679443,
|
764 |
+
"eval_runtime": 41.6653,
|
765 |
+
"eval_samples_per_second": 10.944,
|
766 |
+
"eval_steps_per_second": 1.368,
|
767 |
+
"eval_wer": 0.6122017517366355,
|
768 |
+
"step": 9500
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 13.81,
|
772 |
+
"learning_rate": 5.760916030534351e-05,
|
773 |
+
"loss": 1.8236,
|
774 |
+
"step": 9600
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 13.96,
|
778 |
+
"learning_rate": 5.738015267175571e-05,
|
779 |
+
"loss": 1.8199,
|
780 |
+
"step": 9700
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 14.1,
|
784 |
+
"learning_rate": 5.7151145038167934e-05,
|
785 |
+
"loss": 1.8285,
|
786 |
+
"step": 9800
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 14.24,
|
790 |
+
"learning_rate": 5.692213740458015e-05,
|
791 |
+
"loss": 1.817,
|
792 |
+
"step": 9900
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"epoch": 14.39,
|
796 |
+
"learning_rate": 5.669312977099236e-05,
|
797 |
+
"loss": 1.819,
|
798 |
+
"step": 10000
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"epoch": 14.39,
|
802 |
+
"eval_cer": 0.2074476460399937,
|
803 |
+
"eval_loss": 0.6015097498893738,
|
804 |
+
"eval_runtime": 41.6458,
|
805 |
+
"eval_samples_per_second": 10.949,
|
806 |
+
"eval_steps_per_second": 1.369,
|
807 |
+
"eval_wer": 0.5986106916339474,
|
808 |
+
"step": 10000
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 14.53,
|
812 |
+
"learning_rate": 5.6466412213740455e-05,
|
813 |
+
"loss": 1.7952,
|
814 |
+
"step": 10100
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 14.68,
|
818 |
+
"learning_rate": 5.623740458015266e-05,
|
819 |
+
"loss": 1.7955,
|
820 |
+
"step": 10200
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 14.82,
|
824 |
+
"learning_rate": 5.600839694656488e-05,
|
825 |
+
"loss": 1.7878,
|
826 |
+
"step": 10300
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 14.96,
|
830 |
+
"learning_rate": 5.5779389312977095e-05,
|
831 |
+
"loss": 1.769,
|
832 |
+
"step": 10400
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 15.11,
|
836 |
+
"learning_rate": 5.555267175572519e-05,
|
837 |
+
"loss": 1.7684,
|
838 |
+
"step": 10500
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 15.11,
|
842 |
+
"eval_cer": 0.19815777042985355,
|
843 |
+
"eval_loss": 0.5682193636894226,
|
844 |
+
"eval_runtime": 41.2484,
|
845 |
+
"eval_samples_per_second": 11.055,
|
846 |
+
"eval_steps_per_second": 1.382,
|
847 |
+
"eval_wer": 0.5741467834491091,
|
848 |
+
"step": 10500
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 15.25,
|
852 |
+
"learning_rate": 5.53236641221374e-05,
|
853 |
+
"loss": 1.7626,
|
854 |
+
"step": 10600
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 15.4,
|
858 |
+
"learning_rate": 5.5094656488549616e-05,
|
859 |
+
"loss": 1.7582,
|
860 |
+
"step": 10700
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 15.54,
|
864 |
+
"learning_rate": 5.486564885496182e-05,
|
865 |
+
"loss": 1.75,
|
866 |
+
"step": 10800
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 15.68,
|
870 |
+
"learning_rate": 5.463664122137404e-05,
|
871 |
+
"loss": 1.735,
|
872 |
+
"step": 10900
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 15.83,
|
876 |
+
"learning_rate": 5.4407633587786256e-05,
|
877 |
+
"loss": 1.7195,
|
878 |
+
"step": 11000
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 15.83,
|
882 |
+
"eval_cer": 0.20067705873090852,
|
883 |
+
"eval_loss": 0.5385124683380127,
|
884 |
+
"eval_runtime": 41.6481,
|
885 |
+
"eval_samples_per_second": 10.949,
|
886 |
+
"eval_steps_per_second": 1.369,
|
887 |
+
"eval_wer": 0.5591966173361522,
|
888 |
+
"step": 11000
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 15.97,
|
892 |
+
"learning_rate": 5.417862595419847e-05,
|
893 |
+
"loss": 1.7274,
|
894 |
+
"step": 11100
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 16.11,
|
898 |
+
"learning_rate": 5.3949618320610677e-05,
|
899 |
+
"loss": 1.7183,
|
900 |
+
"step": 11200
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 16.26,
|
904 |
+
"learning_rate": 5.37206106870229e-05,
|
905 |
+
"loss": 1.7117,
|
906 |
+
"step": 11300
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 16.4,
|
910 |
+
"learning_rate": 5.349160305343511e-05,
|
911 |
+
"loss": 1.6918,
|
912 |
+
"step": 11400
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 16.55,
|
916 |
+
"learning_rate": 5.3262595419847324e-05,
|
917 |
+
"loss": 1.7044,
|
918 |
+
"step": 11500
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 16.55,
|
922 |
+
"eval_cer": 0.20965202330341678,
|
923 |
+
"eval_loss": 0.5361923575401306,
|
924 |
+
"eval_runtime": 41.5242,
|
925 |
+
"eval_samples_per_second": 10.982,
|
926 |
+
"eval_steps_per_second": 1.373,
|
927 |
+
"eval_wer": 0.5524010872848082,
|
928 |
+
"step": 11500
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 16.69,
|
932 |
+
"learning_rate": 5.303358778625954e-05,
|
933 |
+
"loss": 1.7134,
|
934 |
+
"step": 11600
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 16.83,
|
938 |
+
"learning_rate": 5.280458015267176e-05,
|
939 |
+
"loss": 1.7016,
|
940 |
+
"step": 11700
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 16.98,
|
944 |
+
"learning_rate": 5.2575572519083964e-05,
|
945 |
+
"loss": 1.7069,
|
946 |
+
"step": 11800
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 17.12,
|
950 |
+
"learning_rate": 5.234656488549618e-05,
|
951 |
+
"loss": 1.7046,
|
952 |
+
"step": 11900
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 17.27,
|
956 |
+
"learning_rate": 5.211755725190839e-05,
|
957 |
+
"loss": 1.6879,
|
958 |
+
"step": 12000
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"epoch": 17.27,
|
962 |
+
"eval_cer": 0.20831365139348135,
|
963 |
+
"eval_loss": 0.5119141936302185,
|
964 |
+
"eval_runtime": 40.4618,
|
965 |
+
"eval_samples_per_second": 11.27,
|
966 |
+
"eval_steps_per_second": 1.409,
|
967 |
+
"eval_wer": 0.5489278163696768,
|
968 |
+
"step": 12000
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 17.41,
|
972 |
+
"learning_rate": 5.188854961832061e-05,
|
973 |
+
"loss": 1.681,
|
974 |
+
"step": 12100
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 17.55,
|
978 |
+
"learning_rate": 5.1659541984732825e-05,
|
979 |
+
"loss": 1.6683,
|
980 |
+
"step": 12200
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 17.7,
|
984 |
+
"learning_rate": 5.143053435114503e-05,
|
985 |
+
"loss": 1.655,
|
986 |
+
"step": 12300
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 17.84,
|
990 |
+
"learning_rate": 5.1201526717557245e-05,
|
991 |
+
"loss": 1.6604,
|
992 |
+
"step": 12400
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 17.98,
|
996 |
+
"learning_rate": 5.0972519083969465e-05,
|
997 |
+
"loss": 1.656,
|
998 |
+
"step": 12500
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 17.98,
|
1002 |
+
"eval_cer": 0.19678003464021415,
|
1003 |
+
"eval_loss": 0.4990406930446625,
|
1004 |
+
"eval_runtime": 40.5826,
|
1005 |
+
"eval_samples_per_second": 11.236,
|
1006 |
+
"eval_steps_per_second": 1.405,
|
1007 |
+
"eval_wer": 0.5362428269405014,
|
1008 |
+
"step": 12500
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"epoch": 18.13,
|
1012 |
+
"learning_rate": 5.074351145038168e-05,
|
1013 |
+
"loss": 1.6645,
|
1014 |
+
"step": 12600
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 18.27,
|
1018 |
+
"learning_rate": 5.051450381679389e-05,
|
1019 |
+
"loss": 1.6269,
|
1020 |
+
"step": 12700
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 18.42,
|
1024 |
+
"learning_rate": 5.02854961832061e-05,
|
1025 |
+
"loss": 1.6306,
|
1026 |
+
"step": 12800
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 18.56,
|
1030 |
+
"learning_rate": 5.005877862595419e-05,
|
1031 |
+
"loss": 1.6191,
|
1032 |
+
"step": 12900
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 18.7,
|
1036 |
+
"learning_rate": 4.9829770992366406e-05,
|
1037 |
+
"loss": 1.6122,
|
1038 |
+
"step": 13000
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 18.7,
|
1042 |
+
"eval_cer": 0.18997008345142496,
|
1043 |
+
"eval_loss": 0.45614466071128845,
|
1044 |
+
"eval_runtime": 41.2927,
|
1045 |
+
"eval_samples_per_second": 11.043,
|
1046 |
+
"eval_steps_per_second": 1.38,
|
1047 |
+
"eval_wer": 0.5092117185140441,
|
1048 |
+
"step": 13000
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 18.85,
|
1052 |
+
"learning_rate": 4.9600763358778626e-05,
|
1053 |
+
"loss": 1.622,
|
1054 |
+
"step": 13100
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 18.99,
|
1058 |
+
"learning_rate": 4.937175572519084e-05,
|
1059 |
+
"loss": 1.6305,
|
1060 |
+
"step": 13200
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 19.14,
|
1064 |
+
"learning_rate": 4.9142748091603046e-05,
|
1065 |
+
"loss": 1.6134,
|
1066 |
+
"step": 13300
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 19.28,
|
1070 |
+
"learning_rate": 4.891374045801526e-05,
|
1071 |
+
"loss": 1.6044,
|
1072 |
+
"step": 13400
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 19.42,
|
1076 |
+
"learning_rate": 4.868473282442748e-05,
|
1077 |
+
"loss": 1.5919,
|
1078 |
+
"step": 13500
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"epoch": 19.42,
|
1082 |
+
"eval_cer": 0.19752794835458984,
|
1083 |
+
"eval_loss": 0.47778981924057007,
|
1084 |
+
"eval_runtime": 41.5758,
|
1085 |
+
"eval_samples_per_second": 10.968,
|
1086 |
+
"eval_steps_per_second": 1.371,
|
1087 |
+
"eval_wer": 0.5225007550588946,
|
1088 |
+
"step": 13500
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 19.57,
|
1092 |
+
"learning_rate": 4.8455725190839694e-05,
|
1093 |
+
"loss": 1.595,
|
1094 |
+
"step": 13600
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 19.71,
|
1098 |
+
"learning_rate": 4.822671755725191e-05,
|
1099 |
+
"loss": 1.5959,
|
1100 |
+
"step": 13700
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 19.86,
|
1104 |
+
"learning_rate": 4.7997709923664114e-05,
|
1105 |
+
"loss": 1.6006,
|
1106 |
+
"step": 13800
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 20.0,
|
1110 |
+
"learning_rate": 4.7768702290076334e-05,
|
1111 |
+
"loss": 1.5913,
|
1112 |
+
"step": 13900
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 20.14,
|
1116 |
+
"learning_rate": 4.753969465648855e-05,
|
1117 |
+
"loss": 1.5896,
|
1118 |
+
"step": 14000
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 20.14,
|
1122 |
+
"eval_cer": 0.18591560384191466,
|
1123 |
+
"eval_loss": 0.4563109278678894,
|
1124 |
+
"eval_runtime": 40.8794,
|
1125 |
+
"eval_samples_per_second": 11.155,
|
1126 |
+
"eval_steps_per_second": 1.394,
|
1127 |
+
"eval_wer": 0.5098157656297191,
|
1128 |
+
"step": 14000
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"epoch": 20.29,
|
1132 |
+
"learning_rate": 4.731068702290076e-05,
|
1133 |
+
"loss": 1.5823,
|
1134 |
+
"step": 14100
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 20.43,
|
1138 |
+
"learning_rate": 4.708167938931297e-05,
|
1139 |
+
"loss": 1.5634,
|
1140 |
+
"step": 14200
|
1141 |
+
},
|
1142 |
+
{
|
1143 |
+
"epoch": 20.57,
|
1144 |
+
"learning_rate": 4.685267175572519e-05,
|
1145 |
+
"loss": 1.5573,
|
1146 |
+
"step": 14300
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 20.72,
|
1150 |
+
"learning_rate": 4.66236641221374e-05,
|
1151 |
+
"loss": 1.5689,
|
1152 |
+
"step": 14400
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"epoch": 20.86,
|
1156 |
+
"learning_rate": 4.6394656488549615e-05,
|
1157 |
+
"loss": 1.5589,
|
1158 |
+
"step": 14500
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 20.86,
|
1162 |
+
"eval_cer": 0.17249252086285624,
|
1163 |
+
"eval_loss": 0.43622052669525146,
|
1164 |
+
"eval_runtime": 41.7277,
|
1165 |
+
"eval_samples_per_second": 10.928,
|
1166 |
+
"eval_steps_per_second": 1.366,
|
1167 |
+
"eval_wer": 0.4939595288432498,
|
1168 |
+
"step": 14500
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 21.01,
|
1172 |
+
"learning_rate": 4.616564885496183e-05,
|
1173 |
+
"loss": 1.5697,
|
1174 |
+
"step": 14600
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 21.15,
|
1178 |
+
"learning_rate": 4.593664122137405e-05,
|
1179 |
+
"loss": 1.5336,
|
1180 |
+
"step": 14700
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"epoch": 21.29,
|
1184 |
+
"learning_rate": 4.5707633587786255e-05,
|
1185 |
+
"loss": 1.5425,
|
1186 |
+
"step": 14800
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 21.44,
|
1190 |
+
"learning_rate": 4.547862595419847e-05,
|
1191 |
+
"loss": 1.5461,
|
1192 |
+
"step": 14900
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 21.58,
|
1196 |
+
"learning_rate": 4.524961832061068e-05,
|
1197 |
+
"loss": 1.5353,
|
1198 |
+
"step": 15000
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"epoch": 21.58,
|
1202 |
+
"eval_cer": 0.15804597701149425,
|
1203 |
+
"eval_loss": 0.41395294666290283,
|
1204 |
+
"eval_runtime": 40.5257,
|
1205 |
+
"eval_samples_per_second": 11.252,
|
1206 |
+
"eval_steps_per_second": 1.407,
|
1207 |
+
"eval_wer": 0.4826336454243431,
|
1208 |
+
"step": 15000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 21.73,
|
1212 |
+
"learning_rate": 4.5020610687022895e-05,
|
1213 |
+
"loss": 1.5348,
|
1214 |
+
"step": 15100
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 21.87,
|
1218 |
+
"learning_rate": 4.4791603053435116e-05,
|
1219 |
+
"loss": 1.5279,
|
1220 |
+
"step": 15200
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 22.01,
|
1224 |
+
"learning_rate": 4.456259541984732e-05,
|
1225 |
+
"loss": 1.5492,
|
1226 |
+
"step": 15300
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 22.16,
|
1230 |
+
"learning_rate": 4.4333587786259536e-05,
|
1231 |
+
"loss": 1.5291,
|
1232 |
+
"step": 15400
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 22.3,
|
1236 |
+
"learning_rate": 4.410458015267175e-05,
|
1237 |
+
"loss": 1.5441,
|
1238 |
+
"step": 15500
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 22.3,
|
1242 |
+
"eval_cer": 0.15501495827428752,
|
1243 |
+
"eval_loss": 0.40313535928726196,
|
1244 |
+
"eval_runtime": 41.0848,
|
1245 |
+
"eval_samples_per_second": 11.099,
|
1246 |
+
"eval_steps_per_second": 1.387,
|
1247 |
+
"eval_wer": 0.47417698580489276,
|
1248 |
+
"step": 15500
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 22.45,
|
1252 |
+
"learning_rate": 4.387557251908397e-05,
|
1253 |
+
"loss": 1.518,
|
1254 |
+
"step": 15600
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 22.59,
|
1258 |
+
"learning_rate": 4.364656488549618e-05,
|
1259 |
+
"loss": 1.5081,
|
1260 |
+
"step": 15700
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"epoch": 22.73,
|
1264 |
+
"learning_rate": 4.341755725190839e-05,
|
1265 |
+
"loss": 1.4959,
|
1266 |
+
"step": 15800
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"epoch": 22.88,
|
1270 |
+
"learning_rate": 4.31885496183206e-05,
|
1271 |
+
"loss": 1.5097,
|
1272 |
+
"step": 15900
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 23.02,
|
1276 |
+
"learning_rate": 4.295954198473282e-05,
|
1277 |
+
"loss": 1.5116,
|
1278 |
+
"step": 16000
|
1279 |
+
},
|
1280 |
+
{
|
1281 |
+
"epoch": 23.02,
|
1282 |
+
"eval_cer": 0.15450322783813572,
|
1283 |
+
"eval_loss": 0.39162585139274597,
|
1284 |
+
"eval_runtime": 40.7373,
|
1285 |
+
"eval_samples_per_second": 11.194,
|
1286 |
+
"eval_steps_per_second": 1.399,
|
1287 |
+
"eval_wer": 0.4747810329205678,
|
1288 |
+
"step": 16000
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"epoch": 23.17,
|
1292 |
+
"learning_rate": 4.273053435114504e-05,
|
1293 |
+
"loss": 1.4951,
|
1294 |
+
"step": 16100
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 23.31,
|
1298 |
+
"learning_rate": 4.250152671755724e-05,
|
1299 |
+
"loss": 1.4974,
|
1300 |
+
"step": 16200
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 23.45,
|
1304 |
+
"learning_rate": 4.227480916030534e-05,
|
1305 |
+
"loss": 1.5045,
|
1306 |
+
"step": 16300
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 23.6,
|
1310 |
+
"learning_rate": 4.204580152671755e-05,
|
1311 |
+
"loss": 1.4944,
|
1312 |
+
"step": 16400
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 23.74,
|
1316 |
+
"learning_rate": 4.181679389312977e-05,
|
1317 |
+
"loss": 1.4731,
|
1318 |
+
"step": 16500
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 23.74,
|
1322 |
+
"eval_cer": 0.15422768068020784,
|
1323 |
+
"eval_loss": 0.3840835392475128,
|
1324 |
+
"eval_runtime": 40.8763,
|
1325 |
+
"eval_samples_per_second": 11.156,
|
1326 |
+
"eval_steps_per_second": 1.394,
|
1327 |
+
"eval_wer": 0.4809725158562368,
|
1328 |
+
"step": 16500
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 23.88,
|
1332 |
+
"learning_rate": 4.1587786259541985e-05,
|
1333 |
+
"loss": 1.472,
|
1334 |
+
"step": 16600
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 24.03,
|
1338 |
+
"learning_rate": 4.13587786259542e-05,
|
1339 |
+
"loss": 1.4847,
|
1340 |
+
"step": 16700
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 24.17,
|
1344 |
+
"learning_rate": 4.1129770992366405e-05,
|
1345 |
+
"loss": 1.4603,
|
1346 |
+
"step": 16800
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 24.32,
|
1350 |
+
"learning_rate": 4.090076335877862e-05,
|
1351 |
+
"loss": 1.4563,
|
1352 |
+
"step": 16900
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 24.46,
|
1356 |
+
"learning_rate": 4.067175572519084e-05,
|
1357 |
+
"loss": 1.4647,
|
1358 |
+
"step": 17000
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 24.46,
|
1362 |
+
"eval_cer": 0.14753582113053063,
|
1363 |
+
"eval_loss": 0.37518319487571716,
|
1364 |
+
"eval_runtime": 41.0205,
|
1365 |
+
"eval_samples_per_second": 11.116,
|
1366 |
+
"eval_steps_per_second": 1.39,
|
1367 |
+
"eval_wer": 0.452431289640592,
|
1368 |
+
"step": 17000
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 24.6,
|
1372 |
+
"learning_rate": 4.044274809160305e-05,
|
1373 |
+
"loss": 1.4585,
|
1374 |
+
"step": 17100
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 24.75,
|
1378 |
+
"learning_rate": 4.021374045801526e-05,
|
1379 |
+
"loss": 1.4692,
|
1380 |
+
"step": 17200
|
1381 |
+
},
|
1382 |
+
{
|
1383 |
+
"epoch": 24.89,
|
1384 |
+
"learning_rate": 3.998473282442747e-05,
|
1385 |
+
"loss": 1.444,
|
1386 |
+
"step": 17300
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 25.04,
|
1390 |
+
"learning_rate": 3.975572519083969e-05,
|
1391 |
+
"loss": 1.4717,
|
1392 |
+
"step": 17400
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"epoch": 25.18,
|
1396 |
+
"learning_rate": 3.9526717557251906e-05,
|
1397 |
+
"loss": 1.4328,
|
1398 |
+
"step": 17500
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 25.18,
|
1402 |
+
"eval_cer": 0.1461187214611872,
|
1403 |
+
"eval_loss": 0.35870596766471863,
|
1404 |
+
"eval_runtime": 40.6723,
|
1405 |
+
"eval_samples_per_second": 11.212,
|
1406 |
+
"eval_steps_per_second": 1.401,
|
1407 |
+
"eval_wer": 0.4475989127151918,
|
1408 |
+
"step": 17500
|
1409 |
+
},
|
1410 |
+
{
|
1411 |
+
"epoch": 25.32,
|
1412 |
+
"learning_rate": 3.929770992366412e-05,
|
1413 |
+
"loss": 1.4329,
|
1414 |
+
"step": 17600
|
1415 |
+
},
|
1416 |
+
{
|
1417 |
+
"epoch": 25.47,
|
1418 |
+
"learning_rate": 3.9068702290076326e-05,
|
1419 |
+
"loss": 1.4209,
|
1420 |
+
"step": 17700
|
1421 |
+
},
|
1422 |
+
{
|
1423 |
+
"epoch": 25.61,
|
1424 |
+
"learning_rate": 3.884198473282442e-05,
|
1425 |
+
"loss": 1.4188,
|
1426 |
+
"step": 17800
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 25.75,
|
1430 |
+
"learning_rate": 3.861297709923664e-05,
|
1431 |
+
"loss": 1.4301,
|
1432 |
+
"step": 17900
|
1433 |
+
},
|
1434 |
+
{
|
1435 |
+
"epoch": 25.9,
|
1436 |
+
"learning_rate": 3.8383969465648854e-05,
|
1437 |
+
"loss": 1.4129,
|
1438 |
+
"step": 18000
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 25.9,
|
1442 |
+
"eval_cer": 0.13663202645252717,
|
1443 |
+
"eval_loss": 0.3428773581981659,
|
1444 |
+
"eval_runtime": 42.0192,
|
1445 |
+
"eval_samples_per_second": 10.852,
|
1446 |
+
"eval_steps_per_second": 1.357,
|
1447 |
+
"eval_wer": 0.42419208698278466,
|
1448 |
+
"step": 18000
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 26.04,
|
1452 |
+
"learning_rate": 3.815496183206107e-05,
|
1453 |
+
"loss": 1.4266,
|
1454 |
+
"step": 18100
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 26.19,
|
1458 |
+
"learning_rate": 3.7925954198473274e-05,
|
1459 |
+
"loss": 1.4166,
|
1460 |
+
"step": 18200
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 26.33,
|
1464 |
+
"learning_rate": 3.7696946564885494e-05,
|
1465 |
+
"loss": 1.4157,
|
1466 |
+
"step": 18300
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 26.47,
|
1470 |
+
"learning_rate": 3.746793893129771e-05,
|
1471 |
+
"loss": 1.4285,
|
1472 |
+
"step": 18400
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 26.62,
|
1476 |
+
"learning_rate": 3.723893129770992e-05,
|
1477 |
+
"loss": 1.4062,
|
1478 |
+
"step": 18500
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 26.62,
|
1482 |
+
"eval_cer": 0.13549047394111163,
|
1483 |
+
"eval_loss": 0.34499478340148926,
|
1484 |
+
"eval_runtime": 41.0336,
|
1485 |
+
"eval_samples_per_second": 11.113,
|
1486 |
+
"eval_steps_per_second": 1.389,
|
1487 |
+
"eval_wer": 0.4250981576562972,
|
1488 |
+
"step": 18500
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 26.76,
|
1492 |
+
"learning_rate": 3.7009923664122134e-05,
|
1493 |
+
"loss": 1.4163,
|
1494 |
+
"step": 18600
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 26.91,
|
1498 |
+
"learning_rate": 3.678091603053435e-05,
|
1499 |
+
"loss": 1.404,
|
1500 |
+
"step": 18700
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 27.05,
|
1504 |
+
"learning_rate": 3.655190839694656e-05,
|
1505 |
+
"loss": 1.4134,
|
1506 |
+
"step": 18800
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 27.19,
|
1510 |
+
"learning_rate": 3.6322900763358775e-05,
|
1511 |
+
"loss": 1.4001,
|
1512 |
+
"step": 18900
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 27.34,
|
1516 |
+
"learning_rate": 3.609389312977099e-05,
|
1517 |
+
"loss": 1.3928,
|
1518 |
+
"step": 19000
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 27.34,
|
1522 |
+
"eval_cer": 0.13218390804597702,
|
1523 |
+
"eval_loss": 0.32969579100608826,
|
1524 |
+
"eval_runtime": 41.0801,
|
1525 |
+
"eval_samples_per_second": 11.1,
|
1526 |
+
"eval_steps_per_second": 1.388,
|
1527 |
+
"eval_wer": 0.4145273331319843,
|
1528 |
+
"step": 19000
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 27.48,
|
1532 |
+
"learning_rate": 3.58648854961832e-05,
|
1533 |
+
"loss": 1.3979,
|
1534 |
+
"step": 19100
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"epoch": 27.63,
|
1538 |
+
"learning_rate": 3.5635877862595415e-05,
|
1539 |
+
"loss": 1.3971,
|
1540 |
+
"step": 19200
|
1541 |
+
},
|
1542 |
+
{
|
1543 |
+
"epoch": 27.77,
|
1544 |
+
"learning_rate": 3.540687022900763e-05,
|
1545 |
+
"loss": 1.3934,
|
1546 |
+
"step": 19300
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 27.91,
|
1550 |
+
"learning_rate": 3.517786259541984e-05,
|
1551 |
+
"loss": 1.3866,
|
1552 |
+
"step": 19400
|
1553 |
+
},
|
1554 |
+
{
|
1555 |
+
"epoch": 28.06,
|
1556 |
+
"learning_rate": 3.4948854961832055e-05,
|
1557 |
+
"loss": 1.3906,
|
1558 |
+
"step": 19500
|
1559 |
+
},
|
1560 |
+
{
|
1561 |
+
"epoch": 28.06,
|
1562 |
+
"eval_cer": 0.1336403715950244,
|
1563 |
+
"eval_loss": 0.32101842761039734,
|
1564 |
+
"eval_runtime": 41.0367,
|
1565 |
+
"eval_samples_per_second": 11.112,
|
1566 |
+
"eval_steps_per_second": 1.389,
|
1567 |
+
"eval_wer": 0.4184536393838719,
|
1568 |
+
"step": 19500
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 28.2,
|
1572 |
+
"learning_rate": 3.471984732824427e-05,
|
1573 |
+
"loss": 1.3689,
|
1574 |
+
"step": 19600
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 28.34,
|
1578 |
+
"learning_rate": 3.449083969465649e-05,
|
1579 |
+
"loss": 1.3715,
|
1580 |
+
"step": 19700
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 28.49,
|
1584 |
+
"learning_rate": 3.4261832061068696e-05,
|
1585 |
+
"loss": 1.3527,
|
1586 |
+
"step": 19800
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 28.63,
|
1590 |
+
"learning_rate": 3.4032824427480916e-05,
|
1591 |
+
"loss": 1.3532,
|
1592 |
+
"step": 19900
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 28.78,
|
1596 |
+
"learning_rate": 3.380381679389312e-05,
|
1597 |
+
"loss": 1.358,
|
1598 |
+
"step": 20000
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 28.78,
|
1602 |
+
"eval_cer": 0.12753897024090693,
|
1603 |
+
"eval_loss": 0.31306591629981995,
|
1604 |
+
"eval_runtime": 41.2359,
|
1605 |
+
"eval_samples_per_second": 11.058,
|
1606 |
+
"eval_steps_per_second": 1.382,
|
1607 |
+
"eval_wer": 0.39700996677740863,
|
1608 |
+
"step": 20000
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 28.92,
|
1612 |
+
"learning_rate": 3.357480916030534e-05,
|
1613 |
+
"loss": 1.3582,
|
1614 |
+
"step": 20100
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 29.06,
|
1618 |
+
"learning_rate": 3.334580152671755e-05,
|
1619 |
+
"loss": 1.3587,
|
1620 |
+
"step": 20200
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 29.21,
|
1624 |
+
"learning_rate": 3.311679389312977e-05,
|
1625 |
+
"loss": 1.3392,
|
1626 |
+
"step": 20300
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 29.35,
|
1630 |
+
"learning_rate": 3.288778625954198e-05,
|
1631 |
+
"loss": 1.3486,
|
1632 |
+
"step": 20400
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"epoch": 29.5,
|
1636 |
+
"learning_rate": 3.26587786259542e-05,
|
1637 |
+
"loss": 1.3445,
|
1638 |
+
"step": 20500
|
1639 |
+
},
|
1640 |
+
{
|
1641 |
+
"epoch": 29.5,
|
1642 |
+
"eval_cer": 0.12761769800031492,
|
1643 |
+
"eval_loss": 0.3069218099117279,
|
1644 |
+
"eval_runtime": 41.0687,
|
1645 |
+
"eval_samples_per_second": 11.103,
|
1646 |
+
"eval_steps_per_second": 1.388,
|
1647 |
+
"eval_wer": 0.3920265780730897,
|
1648 |
+
"step": 20500
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 29.64,
|
1652 |
+
"learning_rate": 3.242977099236641e-05,
|
1653 |
+
"loss": 1.3354,
|
1654 |
+
"step": 20600
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 29.78,
|
1658 |
+
"learning_rate": 3.2200763358778624e-05,
|
1659 |
+
"loss": 1.3334,
|
1660 |
+
"step": 20700
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"epoch": 29.93,
|
1664 |
+
"learning_rate": 3.197175572519084e-05,
|
1665 |
+
"loss": 1.3305,
|
1666 |
+
"step": 20800
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 30.07,
|
1670 |
+
"learning_rate": 3.174274809160305e-05,
|
1671 |
+
"loss": 1.3354,
|
1672 |
+
"step": 20900
|
1673 |
+
},
|
1674 |
+
{
|
1675 |
+
"epoch": 30.22,
|
1676 |
+
"learning_rate": 3.1513740458015264e-05,
|
1677 |
+
"loss": 1.3159,
|
1678 |
+
"step": 21000
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 30.22,
|
1682 |
+
"eval_cer": 0.1254920484962998,
|
1683 |
+
"eval_loss": 0.30346596240997314,
|
1684 |
+
"eval_runtime": 41.0784,
|
1685 |
+
"eval_samples_per_second": 11.101,
|
1686 |
+
"eval_steps_per_second": 1.388,
|
1687 |
+
"eval_wer": 0.3961038961038961,
|
1688 |
+
"step": 21000
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 30.36,
|
1692 |
+
"learning_rate": 3.128473282442748e-05,
|
1693 |
+
"loss": 1.3376,
|
1694 |
+
"step": 21100
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 30.5,
|
1698 |
+
"learning_rate": 3.105572519083969e-05,
|
1699 |
+
"loss": 1.324,
|
1700 |
+
"step": 21200
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 30.65,
|
1704 |
+
"learning_rate": 3.0826717557251904e-05,
|
1705 |
+
"loss": 1.3091,
|
1706 |
+
"step": 21300
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 30.79,
|
1710 |
+
"learning_rate": 3.059770992366412e-05,
|
1711 |
+
"loss": 1.3213,
|
1712 |
+
"step": 21400
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 30.93,
|
1716 |
+
"learning_rate": 3.0368702290076335e-05,
|
1717 |
+
"loss": 1.3044,
|
1718 |
+
"step": 21500
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 30.93,
|
1722 |
+
"eval_cer": 0.12423240434577232,
|
1723 |
+
"eval_loss": 0.29519879817962646,
|
1724 |
+
"eval_runtime": 41.1753,
|
1725 |
+
"eval_samples_per_second": 11.075,
|
1726 |
+
"eval_steps_per_second": 1.384,
|
1727 |
+
"eval_wer": 0.3853820598006645,
|
1728 |
+
"step": 21500
|
1729 |
+
},
|
1730 |
+
{
|
1731 |
+
"epoch": 31.08,
|
1732 |
+
"learning_rate": 3.0139694656488545e-05,
|
1733 |
+
"loss": 1.3033,
|
1734 |
+
"step": 21600
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 31.22,
|
1738 |
+
"learning_rate": 2.991068702290076e-05,
|
1739 |
+
"loss": 1.2995,
|
1740 |
+
"step": 21700
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 31.37,
|
1744 |
+
"learning_rate": 2.9681679389312975e-05,
|
1745 |
+
"loss": 1.3101,
|
1746 |
+
"step": 21800
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 31.51,
|
1750 |
+
"learning_rate": 2.945267175572519e-05,
|
1751 |
+
"loss": 1.304,
|
1752 |
+
"step": 21900
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 31.65,
|
1756 |
+
"learning_rate": 2.9223664122137402e-05,
|
1757 |
+
"loss": 1.3034,
|
1758 |
+
"step": 22000
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"epoch": 31.65,
|
1762 |
+
"eval_cer": 0.12273657691702095,
|
1763 |
+
"eval_loss": 0.29660850763320923,
|
1764 |
+
"eval_runtime": 41.8912,
|
1765 |
+
"eval_samples_per_second": 10.885,
|
1766 |
+
"eval_steps_per_second": 1.361,
|
1767 |
+
"eval_wer": 0.37722742373905166,
|
1768 |
+
"step": 22000
|
1769 |
+
},
|
1770 |
+
{
|
1771 |
+
"epoch": 31.8,
|
1772 |
+
"learning_rate": 2.8994656488549615e-05,
|
1773 |
+
"loss": 1.2912,
|
1774 |
+
"step": 22100
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 31.94,
|
1778 |
+
"learning_rate": 2.876564885496183e-05,
|
1779 |
+
"loss": 1.299,
|
1780 |
+
"step": 22200
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 32.09,
|
1784 |
+
"learning_rate": 2.8536641221374046e-05,
|
1785 |
+
"loss": 1.3042,
|
1786 |
+
"step": 22300
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 32.23,
|
1790 |
+
"learning_rate": 2.8307633587786256e-05,
|
1791 |
+
"loss": 1.294,
|
1792 |
+
"step": 22400
|
1793 |
+
},
|
1794 |
+
{
|
1795 |
+
"epoch": 32.37,
|
1796 |
+
"learning_rate": 2.8078625954198472e-05,
|
1797 |
+
"loss": 1.2963,
|
1798 |
+
"step": 22500
|
1799 |
+
},
|
1800 |
+
{
|
1801 |
+
"epoch": 32.37,
|
1802 |
+
"eval_cer": 0.12080774681152574,
|
1803 |
+
"eval_loss": 0.2843906879425049,
|
1804 |
+
"eval_runtime": 41.7644,
|
1805 |
+
"eval_samples_per_second": 10.918,
|
1806 |
+
"eval_steps_per_second": 1.365,
|
1807 |
+
"eval_wer": 0.3705829054666264,
|
1808 |
+
"step": 22500
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 32.52,
|
1812 |
+
"learning_rate": 2.7849618320610682e-05,
|
1813 |
+
"loss": 1.2769,
|
1814 |
+
"step": 22600
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 32.66,
|
1818 |
+
"learning_rate": 2.76206106870229e-05,
|
1819 |
+
"loss": 1.2812,
|
1820 |
+
"step": 22700
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 32.8,
|
1824 |
+
"learning_rate": 2.7391603053435113e-05,
|
1825 |
+
"loss": 1.2827,
|
1826 |
+
"step": 22800
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 32.95,
|
1830 |
+
"learning_rate": 2.7162595419847326e-05,
|
1831 |
+
"loss": 1.2747,
|
1832 |
+
"step": 22900
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 33.09,
|
1836 |
+
"learning_rate": 2.6935877862595417e-05,
|
1837 |
+
"loss": 1.2765,
|
1838 |
+
"step": 23000
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 33.09,
|
1842 |
+
"eval_cer": 0.11726499763816722,
|
1843 |
+
"eval_loss": 0.28407707810401917,
|
1844 |
+
"eval_runtime": 40.9894,
|
1845 |
+
"eval_samples_per_second": 11.125,
|
1846 |
+
"eval_steps_per_second": 1.391,
|
1847 |
+
"eval_wer": 0.35668982180610087,
|
1848 |
+
"step": 23000
|
1849 |
+
},
|
1850 |
+
{
|
1851 |
+
"epoch": 33.24,
|
1852 |
+
"learning_rate": 2.670687022900763e-05,
|
1853 |
+
"loss": 1.2785,
|
1854 |
+
"step": 23100
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 33.38,
|
1858 |
+
"learning_rate": 2.6477862595419844e-05,
|
1859 |
+
"loss": 1.2644,
|
1860 |
+
"step": 23200
|
1861 |
+
},
|
1862 |
+
{
|
1863 |
+
"epoch": 33.52,
|
1864 |
+
"learning_rate": 2.624885496183206e-05,
|
1865 |
+
"loss": 1.2724,
|
1866 |
+
"step": 23300
|
1867 |
+
},
|
1868 |
+
{
|
1869 |
+
"epoch": 33.67,
|
1870 |
+
"learning_rate": 2.601984732824427e-05,
|
1871 |
+
"loss": 1.2551,
|
1872 |
+
"step": 23400
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"epoch": 33.81,
|
1876 |
+
"learning_rate": 2.5790839694656488e-05,
|
1877 |
+
"loss": 1.2438,
|
1878 |
+
"step": 23500
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 33.81,
|
1882 |
+
"eval_cer": 0.11372224846480869,
|
1883 |
+
"eval_loss": 0.2734295129776001,
|
1884 |
+
"eval_runtime": 41.7199,
|
1885 |
+
"eval_samples_per_second": 10.93,
|
1886 |
+
"eval_steps_per_second": 1.366,
|
1887 |
+
"eval_wer": 0.35517970401691334,
|
1888 |
+
"step": 23500
|
1889 |
+
},
|
1890 |
+
{
|
1891 |
+
"epoch": 33.96,
|
1892 |
+
"learning_rate": 2.5561832061068698e-05,
|
1893 |
+
"loss": 1.2491,
|
1894 |
+
"step": 23600
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"epoch": 34.1,
|
1898 |
+
"learning_rate": 2.5332824427480915e-05,
|
1899 |
+
"loss": 1.252,
|
1900 |
+
"step": 23700
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"epoch": 34.24,
|
1904 |
+
"learning_rate": 2.5103816793893128e-05,
|
1905 |
+
"loss": 1.2467,
|
1906 |
+
"step": 23800
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 34.39,
|
1910 |
+
"learning_rate": 2.487480916030534e-05,
|
1911 |
+
"loss": 1.2406,
|
1912 |
+
"step": 23900
|
1913 |
+
},
|
1914 |
+
{
|
1915 |
+
"epoch": 34.53,
|
1916 |
+
"learning_rate": 2.4645801526717555e-05,
|
1917 |
+
"loss": 1.2487,
|
1918 |
+
"step": 24000
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"epoch": 34.53,
|
1922 |
+
"eval_cer": 0.11179341835931349,
|
1923 |
+
"eval_loss": 0.2702818512916565,
|
1924 |
+
"eval_runtime": 41.8515,
|
1925 |
+
"eval_samples_per_second": 10.896,
|
1926 |
+
"eval_steps_per_second": 1.362,
|
1927 |
+
"eval_wer": 0.3501963153125944,
|
1928 |
+
"step": 24000
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 34.68,
|
1932 |
+
"learning_rate": 2.441679389312977e-05,
|
1933 |
+
"loss": 1.2504,
|
1934 |
+
"step": 24100
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 34.82,
|
1938 |
+
"learning_rate": 2.4187786259541982e-05,
|
1939 |
+
"loss": 1.2341,
|
1940 |
+
"step": 24200
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 34.96,
|
1944 |
+
"learning_rate": 2.39587786259542e-05,
|
1945 |
+
"loss": 1.2477,
|
1946 |
+
"step": 24300
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 35.11,
|
1950 |
+
"learning_rate": 2.372977099236641e-05,
|
1951 |
+
"loss": 1.2427,
|
1952 |
+
"step": 24400
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 35.25,
|
1956 |
+
"learning_rate": 2.3500763358778626e-05,
|
1957 |
+
"loss": 1.2249,
|
1958 |
+
"step": 24500
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 35.25,
|
1962 |
+
"eval_cer": 0.11423397890096047,
|
1963 |
+
"eval_loss": 0.2650163471698761,
|
1964 |
+
"eval_runtime": 41.2103,
|
1965 |
+
"eval_samples_per_second": 11.065,
|
1966 |
+
"eval_steps_per_second": 1.383,
|
1967 |
+
"eval_wer": 0.3483841739655693,
|
1968 |
+
"step": 24500
|
1969 |
+
},
|
1970 |
+
{
|
1971 |
+
"epoch": 35.4,
|
1972 |
+
"learning_rate": 2.3271755725190836e-05,
|
1973 |
+
"loss": 1.2265,
|
1974 |
+
"step": 24600
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 35.54,
|
1978 |
+
"learning_rate": 2.3042748091603052e-05,
|
1979 |
+
"loss": 1.2276,
|
1980 |
+
"step": 24700
|
1981 |
+
},
|
1982 |
+
{
|
1983 |
+
"epoch": 35.68,
|
1984 |
+
"learning_rate": 2.2816030534351143e-05,
|
1985 |
+
"loss": 1.2332,
|
1986 |
+
"step": 24800
|
1987 |
+
},
|
1988 |
+
{
|
1989 |
+
"epoch": 35.83,
|
1990 |
+
"learning_rate": 2.2587022900763357e-05,
|
1991 |
+
"loss": 1.2249,
|
1992 |
+
"step": 24900
|
1993 |
+
},
|
1994 |
+
{
|
1995 |
+
"epoch": 35.97,
|
1996 |
+
"learning_rate": 2.235801526717557e-05,
|
1997 |
+
"loss": 1.2229,
|
1998 |
+
"step": 25000
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"epoch": 35.97,
|
2002 |
+
"eval_cer": 0.10970713273500236,
|
2003 |
+
"eval_loss": 0.25843024253845215,
|
2004 |
+
"eval_runtime": 42.815,
|
2005 |
+
"eval_samples_per_second": 10.65,
|
2006 |
+
"eval_steps_per_second": 1.331,
|
2007 |
+
"eval_wer": 0.3373603141045001,
|
2008 |
+
"step": 25000
|
2009 |
+
},
|
2010 |
+
{
|
2011 |
+
"epoch": 36.11,
|
2012 |
+
"learning_rate": 2.2129007633587784e-05,
|
2013 |
+
"loss": 1.2412,
|
2014 |
+
"step": 25100
|
2015 |
+
},
|
2016 |
+
{
|
2017 |
+
"epoch": 36.26,
|
2018 |
+
"learning_rate": 2.1899999999999997e-05,
|
2019 |
+
"loss": 1.212,
|
2020 |
+
"step": 25200
|
2021 |
+
},
|
2022 |
+
{
|
2023 |
+
"epoch": 36.4,
|
2024 |
+
"learning_rate": 2.1670992366412214e-05,
|
2025 |
+
"loss": 1.2151,
|
2026 |
+
"step": 25300
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 36.55,
|
2030 |
+
"learning_rate": 2.1441984732824424e-05,
|
2031 |
+
"loss": 1.2303,
|
2032 |
+
"step": 25400
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 36.69,
|
2036 |
+
"learning_rate": 2.121297709923664e-05,
|
2037 |
+
"loss": 1.2374,
|
2038 |
+
"step": 25500
|
2039 |
+
},
|
2040 |
+
{
|
2041 |
+
"epoch": 36.69,
|
2042 |
+
"eval_cer": 0.10951031333648244,
|
2043 |
+
"eval_loss": 0.2568279504776001,
|
2044 |
+
"eval_runtime": 41.6839,
|
2045 |
+
"eval_samples_per_second": 10.939,
|
2046 |
+
"eval_steps_per_second": 1.367,
|
2047 |
+
"eval_wer": 0.33373603141045,
|
2048 |
+
"step": 25500
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 36.83,
|
2052 |
+
"learning_rate": 2.098396946564885e-05,
|
2053 |
+
"loss": 1.2152,
|
2054 |
+
"step": 25600
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 36.98,
|
2058 |
+
"learning_rate": 2.0754961832061068e-05,
|
2059 |
+
"loss": 1.2089,
|
2060 |
+
"step": 25700
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 37.12,
|
2064 |
+
"learning_rate": 2.052595419847328e-05,
|
2065 |
+
"loss": 1.2201,
|
2066 |
+
"step": 25800
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 37.27,
|
2070 |
+
"learning_rate": 2.0296946564885495e-05,
|
2071 |
+
"loss": 1.2006,
|
2072 |
+
"step": 25900
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 37.41,
|
2076 |
+
"learning_rate": 2.0067938931297708e-05,
|
2077 |
+
"loss": 1.2153,
|
2078 |
+
"step": 26000
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 37.41,
|
2082 |
+
"eval_cer": 0.10710911667453944,
|
2083 |
+
"eval_loss": 0.24941784143447876,
|
2084 |
+
"eval_runtime": 41.3494,
|
2085 |
+
"eval_samples_per_second": 11.028,
|
2086 |
+
"eval_steps_per_second": 1.378,
|
2087 |
+
"eval_wer": 0.33267894895801875,
|
2088 |
+
"step": 26000
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 37.55,
|
2092 |
+
"learning_rate": 1.983893129770992e-05,
|
2093 |
+
"loss": 1.2071,
|
2094 |
+
"step": 26100
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 37.7,
|
2098 |
+
"learning_rate": 1.9609923664122135e-05,
|
2099 |
+
"loss": 1.2042,
|
2100 |
+
"step": 26200
|
2101 |
+
},
|
2102 |
+
{
|
2103 |
+
"epoch": 37.84,
|
2104 |
+
"learning_rate": 1.9380916030534352e-05,
|
2105 |
+
"loss": 1.2037,
|
2106 |
+
"step": 26300
|
2107 |
+
},
|
2108 |
+
{
|
2109 |
+
"epoch": 37.98,
|
2110 |
+
"learning_rate": 1.9151908396946562e-05,
|
2111 |
+
"loss": 1.1962,
|
2112 |
+
"step": 26400
|
2113 |
+
},
|
2114 |
+
{
|
2115 |
+
"epoch": 38.13,
|
2116 |
+
"learning_rate": 1.892290076335878e-05,
|
2117 |
+
"loss": 1.1925,
|
2118 |
+
"step": 26500
|
2119 |
+
},
|
2120 |
+
{
|
2121 |
+
"epoch": 38.13,
|
2122 |
+
"eval_cer": 0.1076995748700992,
|
2123 |
+
"eval_loss": 0.2518324553966522,
|
2124 |
+
"eval_runtime": 40.748,
|
2125 |
+
"eval_samples_per_second": 11.191,
|
2126 |
+
"eval_steps_per_second": 1.399,
|
2127 |
+
"eval_wer": 0.33660525520990636,
|
2128 |
+
"step": 26500
|
2129 |
+
},
|
2130 |
+
{
|
2131 |
+
"epoch": 38.27,
|
2132 |
+
"learning_rate": 1.869389312977099e-05,
|
2133 |
+
"loss": 1.1969,
|
2134 |
+
"step": 26600
|
2135 |
+
},
|
2136 |
+
{
|
2137 |
+
"epoch": 38.42,
|
2138 |
+
"learning_rate": 1.8464885496183202e-05,
|
2139 |
+
"loss": 1.1947,
|
2140 |
+
"step": 26700
|
2141 |
+
},
|
2142 |
+
{
|
2143 |
+
"epoch": 38.56,
|
2144 |
+
"learning_rate": 1.823587786259542e-05,
|
2145 |
+
"loss": 1.2005,
|
2146 |
+
"step": 26800
|
2147 |
+
},
|
2148 |
+
{
|
2149 |
+
"epoch": 38.7,
|
2150 |
+
"learning_rate": 1.8006870229007632e-05,
|
2151 |
+
"loss": 1.1961,
|
2152 |
+
"step": 26900
|
2153 |
+
},
|
2154 |
+
{
|
2155 |
+
"epoch": 38.85,
|
2156 |
+
"learning_rate": 1.7777862595419846e-05,
|
2157 |
+
"loss": 1.1908,
|
2158 |
+
"step": 27000
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 38.85,
|
2162 |
+
"eval_cer": 0.10565265312549205,
|
2163 |
+
"eval_loss": 0.24367305636405945,
|
2164 |
+
"eval_runtime": 41.2308,
|
2165 |
+
"eval_samples_per_second": 11.06,
|
2166 |
+
"eval_steps_per_second": 1.382,
|
2167 |
+
"eval_wer": 0.3272425249169435,
|
2168 |
+
"step": 27000
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 38.99,
|
2172 |
+
"learning_rate": 1.754885496183206e-05,
|
2173 |
+
"loss": 1.1762,
|
2174 |
+
"step": 27100
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 39.14,
|
2178 |
+
"learning_rate": 1.7319847328244273e-05,
|
2179 |
+
"loss": 1.2018,
|
2180 |
+
"step": 27200
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 39.28,
|
2184 |
+
"learning_rate": 1.7090839694656486e-05,
|
2185 |
+
"loss": 1.1822,
|
2186 |
+
"step": 27300
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 39.42,
|
2190 |
+
"learning_rate": 1.68618320610687e-05,
|
2191 |
+
"loss": 1.1745,
|
2192 |
+
"step": 27400
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 39.57,
|
2196 |
+
"learning_rate": 1.6632824427480913e-05,
|
2197 |
+
"loss": 1.1858,
|
2198 |
+
"step": 27500
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 39.57,
|
2202 |
+
"eval_cer": 0.10443237285466855,
|
2203 |
+
"eval_loss": 0.23960824310779572,
|
2204 |
+
"eval_runtime": 42.517,
|
2205 |
+
"eval_samples_per_second": 10.725,
|
2206 |
+
"eval_steps_per_second": 1.341,
|
2207 |
+
"eval_wer": 0.32648746602234974,
|
2208 |
+
"step": 27500
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 39.71,
|
2212 |
+
"learning_rate": 1.6403816793893127e-05,
|
2213 |
+
"loss": 1.1866,
|
2214 |
+
"step": 27600
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 39.86,
|
2218 |
+
"learning_rate": 1.617480916030534e-05,
|
2219 |
+
"loss": 1.1878,
|
2220 |
+
"step": 27700
|
2221 |
+
},
|
2222 |
+
{
|
2223 |
+
"epoch": 40.0,
|
2224 |
+
"learning_rate": 1.5945801526717557e-05,
|
2225 |
+
"loss": 1.1817,
|
2226 |
+
"step": 27800
|
2227 |
+
},
|
2228 |
+
{
|
2229 |
+
"epoch": 40.14,
|
2230 |
+
"learning_rate": 1.571679389312977e-05,
|
2231 |
+
"loss": 1.1851,
|
2232 |
+
"step": 27900
|
2233 |
+
},
|
2234 |
+
{
|
2235 |
+
"epoch": 40.29,
|
2236 |
+
"learning_rate": 1.5487786259541984e-05,
|
2237 |
+
"loss": 1.1808,
|
2238 |
+
"step": 28000
|
2239 |
+
},
|
2240 |
+
{
|
2241 |
+
"epoch": 40.29,
|
2242 |
+
"eval_cer": 0.10277908990710125,
|
2243 |
+
"eval_loss": 0.2373325228691101,
|
2244 |
+
"eval_runtime": 41.3513,
|
2245 |
+
"eval_samples_per_second": 11.027,
|
2246 |
+
"eval_steps_per_second": 1.378,
|
2247 |
+
"eval_wer": 0.31561461794019935,
|
2248 |
+
"step": 28000
|
2249 |
+
},
|
2250 |
+
{
|
2251 |
+
"epoch": 40.43,
|
2252 |
+
"learning_rate": 1.5258778625954197e-05,
|
2253 |
+
"loss": 1.1558,
|
2254 |
+
"step": 28100
|
2255 |
+
},
|
2256 |
+
{
|
2257 |
+
"epoch": 40.57,
|
2258 |
+
"learning_rate": 1.502977099236641e-05,
|
2259 |
+
"loss": 1.1804,
|
2260 |
+
"step": 28200
|
2261 |
+
},
|
2262 |
+
{
|
2263 |
+
"epoch": 40.72,
|
2264 |
+
"learning_rate": 1.4800763358778624e-05,
|
2265 |
+
"loss": 1.1736,
|
2266 |
+
"step": 28300
|
2267 |
+
},
|
2268 |
+
{
|
2269 |
+
"epoch": 40.86,
|
2270 |
+
"learning_rate": 1.4571755725190838e-05,
|
2271 |
+
"loss": 1.1782,
|
2272 |
+
"step": 28400
|
2273 |
+
},
|
2274 |
+
{
|
2275 |
+
"epoch": 41.01,
|
2276 |
+
"learning_rate": 1.4342748091603053e-05,
|
2277 |
+
"loss": 1.1842,
|
2278 |
+
"step": 28500
|
2279 |
+
},
|
2280 |
+
{
|
2281 |
+
"epoch": 41.01,
|
2282 |
+
"eval_cer": 0.10258227050858132,
|
2283 |
+
"eval_loss": 0.23562349379062653,
|
2284 |
+
"eval_runtime": 40.492,
|
2285 |
+
"eval_samples_per_second": 11.261,
|
2286 |
+
"eval_steps_per_second": 1.408,
|
2287 |
+
"eval_wer": 0.31516158260344307,
|
2288 |
+
"step": 28500
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 41.15,
|
2292 |
+
"learning_rate": 1.4113740458015266e-05,
|
2293 |
+
"loss": 1.1595,
|
2294 |
+
"step": 28600
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 41.29,
|
2298 |
+
"learning_rate": 1.388473282442748e-05,
|
2299 |
+
"loss": 1.1527,
|
2300 |
+
"step": 28700
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 41.44,
|
2304 |
+
"learning_rate": 1.3655725190839693e-05,
|
2305 |
+
"loss": 1.1517,
|
2306 |
+
"step": 28800
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 41.58,
|
2310 |
+
"learning_rate": 1.3426717557251907e-05,
|
2311 |
+
"loss": 1.1609,
|
2312 |
+
"step": 28900
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 41.73,
|
2316 |
+
"learning_rate": 1.3197709923664122e-05,
|
2317 |
+
"loss": 1.1668,
|
2318 |
+
"step": 29000
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 41.73,
|
2322 |
+
"eval_cer": 0.10246417886946937,
|
2323 |
+
"eval_loss": 0.23187227547168732,
|
2324 |
+
"eval_runtime": 40.5813,
|
2325 |
+
"eval_samples_per_second": 11.237,
|
2326 |
+
"eval_steps_per_second": 1.405,
|
2327 |
+
"eval_wer": 0.3187858652974932,
|
2328 |
+
"step": 29000
|
2329 |
+
},
|
2330 |
+
{
|
2331 |
+
"epoch": 41.87,
|
2332 |
+
"learning_rate": 1.2968702290076335e-05,
|
2333 |
+
"loss": 1.1536,
|
2334 |
+
"step": 29100
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 42.01,
|
2338 |
+
"learning_rate": 1.2739694656488549e-05,
|
2339 |
+
"loss": 1.1649,
|
2340 |
+
"step": 29200
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 42.16,
|
2344 |
+
"learning_rate": 1.2510687022900762e-05,
|
2345 |
+
"loss": 1.1459,
|
2346 |
+
"step": 29300
|
2347 |
+
},
|
2348 |
+
{
|
2349 |
+
"epoch": 42.3,
|
2350 |
+
"learning_rate": 1.2281679389312975e-05,
|
2351 |
+
"loss": 1.1495,
|
2352 |
+
"step": 29400
|
2353 |
+
},
|
2354 |
+
{
|
2355 |
+
"epoch": 42.45,
|
2356 |
+
"learning_rate": 1.205267175572519e-05,
|
2357 |
+
"loss": 1.1448,
|
2358 |
+
"step": 29500
|
2359 |
+
},
|
2360 |
+
{
|
2361 |
+
"epoch": 42.45,
|
2362 |
+
"eval_cer": 0.09947252401196661,
|
2363 |
+
"eval_loss": 0.2292834371328354,
|
2364 |
+
"eval_runtime": 41.732,
|
2365 |
+
"eval_samples_per_second": 10.927,
|
2366 |
+
"eval_steps_per_second": 1.366,
|
2367 |
+
"eval_wer": 0.3098761703412866,
|
2368 |
+
"step": 29500
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 42.59,
|
2372 |
+
"learning_rate": 1.1823664122137404e-05,
|
2373 |
+
"loss": 1.1408,
|
2374 |
+
"step": 29600
|
2375 |
+
},
|
2376 |
+
{
|
2377 |
+
"epoch": 42.73,
|
2378 |
+
"learning_rate": 1.1594656488549618e-05,
|
2379 |
+
"loss": 1.1458,
|
2380 |
+
"step": 29700
|
2381 |
+
},
|
2382 |
+
{
|
2383 |
+
"epoch": 42.88,
|
2384 |
+
"learning_rate": 1.1365648854961831e-05,
|
2385 |
+
"loss": 1.1358,
|
2386 |
+
"step": 29800
|
2387 |
+
},
|
2388 |
+
{
|
2389 |
+
"epoch": 43.02,
|
2390 |
+
"learning_rate": 1.1136641221374044e-05,
|
2391 |
+
"loss": 1.1519,
|
2392 |
+
"step": 29900
|
2393 |
+
},
|
2394 |
+
{
|
2395 |
+
"epoch": 43.17,
|
2396 |
+
"learning_rate": 1.0909923664122137e-05,
|
2397 |
+
"loss": 1.1327,
|
2398 |
+
"step": 30000
|
2399 |
+
},
|
2400 |
+
{
|
2401 |
+
"epoch": 43.17,
|
2402 |
+
"eval_cer": 0.09793733270351125,
|
2403 |
+
"eval_loss": 0.2265164852142334,
|
2404 |
+
"eval_runtime": 40.9338,
|
2405 |
+
"eval_samples_per_second": 11.14,
|
2406 |
+
"eval_steps_per_second": 1.392,
|
2407 |
+
"eval_wer": 0.3047417698580489,
|
2408 |
+
"step": 30000
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 43.31,
|
2412 |
+
"learning_rate": 1.068091603053435e-05,
|
2413 |
+
"loss": 1.1322,
|
2414 |
+
"step": 30100
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 43.45,
|
2418 |
+
"learning_rate": 1.0451908396946564e-05,
|
2419 |
+
"loss": 1.1392,
|
2420 |
+
"step": 30200
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 43.6,
|
2424 |
+
"learning_rate": 1.0222900763358777e-05,
|
2425 |
+
"loss": 1.1318,
|
2426 |
+
"step": 30300
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 43.74,
|
2430 |
+
"learning_rate": 9.99389312977099e-06,
|
2431 |
+
"loss": 1.1321,
|
2432 |
+
"step": 30400
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 43.88,
|
2436 |
+
"learning_rate": 9.764885496183206e-06,
|
2437 |
+
"loss": 1.1307,
|
2438 |
+
"step": 30500
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 43.88,
|
2442 |
+
"eval_cer": 0.09888206581640686,
|
2443 |
+
"eval_loss": 0.22221311926841736,
|
2444 |
+
"eval_runtime": 40.9097,
|
2445 |
+
"eval_samples_per_second": 11.147,
|
2446 |
+
"eval_steps_per_second": 1.393,
|
2447 |
+
"eval_wer": 0.30776200543642407,
|
2448 |
+
"step": 30500
|
2449 |
+
},
|
2450 |
+
{
|
2451 |
+
"epoch": 44.03,
|
2452 |
+
"learning_rate": 9.53587786259542e-06,
|
2453 |
+
"loss": 1.1358,
|
2454 |
+
"step": 30600
|
2455 |
+
},
|
2456 |
+
{
|
2457 |
+
"epoch": 44.17,
|
2458 |
+
"learning_rate": 9.306870229007633e-06,
|
2459 |
+
"loss": 1.1342,
|
2460 |
+
"step": 30700
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 44.32,
|
2464 |
+
"learning_rate": 9.077862595419846e-06,
|
2465 |
+
"loss": 1.1348,
|
2466 |
+
"step": 30800
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 44.46,
|
2470 |
+
"learning_rate": 8.84885496183206e-06,
|
2471 |
+
"loss": 1.1294,
|
2472 |
+
"step": 30900
|
2473 |
+
},
|
2474 |
+
{
|
2475 |
+
"epoch": 44.6,
|
2476 |
+
"learning_rate": 8.619847328244275e-06,
|
2477 |
+
"loss": 1.1419,
|
2478 |
+
"step": 31000
|
2479 |
+
},
|
2480 |
+
{
|
2481 |
+
"epoch": 44.6,
|
2482 |
+
"eval_cer": 0.09813415210203118,
|
2483 |
+
"eval_loss": 0.22149430215358734,
|
2484 |
+
"eval_runtime": 40.8027,
|
2485 |
+
"eval_samples_per_second": 11.176,
|
2486 |
+
"eval_steps_per_second": 1.397,
|
2487 |
+
"eval_wer": 0.3038356991845364,
|
2488 |
+
"step": 31000
|
2489 |
+
},
|
2490 |
+
{
|
2491 |
+
"epoch": 44.75,
|
2492 |
+
"learning_rate": 8.390839694656488e-06,
|
2493 |
+
"loss": 1.1191,
|
2494 |
+
"step": 31100
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 44.89,
|
2498 |
+
"learning_rate": 8.161832061068702e-06,
|
2499 |
+
"loss": 1.1223,
|
2500 |
+
"step": 31200
|
2501 |
+
},
|
2502 |
+
{
|
2503 |
+
"epoch": 45.04,
|
2504 |
+
"learning_rate": 7.932824427480915e-06,
|
2505 |
+
"loss": 1.1393,
|
2506 |
+
"step": 31300
|
2507 |
+
},
|
2508 |
+
{
|
2509 |
+
"epoch": 45.18,
|
2510 |
+
"learning_rate": 7.703816793893129e-06,
|
2511 |
+
"loss": 1.1172,
|
2512 |
+
"step": 31400
|
2513 |
+
},
|
2514 |
+
{
|
2515 |
+
"epoch": 45.32,
|
2516 |
+
"learning_rate": 7.474809160305343e-06,
|
2517 |
+
"loss": 1.1231,
|
2518 |
+
"step": 31500
|
2519 |
+
},
|
2520 |
+
{
|
2521 |
+
"epoch": 45.32,
|
2522 |
+
"eval_cer": 0.09722878286883956,
|
2523 |
+
"eval_loss": 0.2193477302789688,
|
2524 |
+
"eval_runtime": 40.6396,
|
2525 |
+
"eval_samples_per_second": 11.221,
|
2526 |
+
"eval_steps_per_second": 1.403,
|
2527 |
+
"eval_wer": 0.3012684989429176,
|
2528 |
+
"step": 31500
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 45.47,
|
2532 |
+
"learning_rate": 7.245801526717557e-06,
|
2533 |
+
"loss": 1.1289,
|
2534 |
+
"step": 31600
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 45.61,
|
2538 |
+
"learning_rate": 7.016793893129771e-06,
|
2539 |
+
"loss": 1.1083,
|
2540 |
+
"step": 31700
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 45.75,
|
2544 |
+
"learning_rate": 6.787786259541984e-06,
|
2545 |
+
"loss": 1.109,
|
2546 |
+
"step": 31800
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 45.9,
|
2550 |
+
"learning_rate": 6.558778625954198e-06,
|
2551 |
+
"loss": 1.1218,
|
2552 |
+
"step": 31900
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 46.04,
|
2556 |
+
"learning_rate": 6.329770992366412e-06,
|
2557 |
+
"loss": 1.139,
|
2558 |
+
"step": 32000
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 46.04,
|
2562 |
+
"eval_cer": 0.09683514407179972,
|
2563 |
+
"eval_loss": 0.2162453532218933,
|
2564 |
+
"eval_runtime": 41.1951,
|
2565 |
+
"eval_samples_per_second": 11.069,
|
2566 |
+
"eval_steps_per_second": 1.384,
|
2567 |
+
"eval_wer": 0.30066445182724255,
|
2568 |
+
"step": 32000
|
2569 |
+
},
|
2570 |
+
{
|
2571 |
+
"epoch": 46.19,
|
2572 |
+
"learning_rate": 6.100763358778626e-06,
|
2573 |
+
"loss": 1.1155,
|
2574 |
+
"step": 32100
|
2575 |
+
},
|
2576 |
+
{
|
2577 |
+
"epoch": 46.33,
|
2578 |
+
"learning_rate": 5.8717557251908395e-06,
|
2579 |
+
"loss": 1.1212,
|
2580 |
+
"step": 32200
|
2581 |
+
},
|
2582 |
+
{
|
2583 |
+
"epoch": 46.47,
|
2584 |
+
"learning_rate": 5.642748091603053e-06,
|
2585 |
+
"loss": 1.1149,
|
2586 |
+
"step": 32300
|
2587 |
+
},
|
2588 |
+
{
|
2589 |
+
"epoch": 46.62,
|
2590 |
+
"learning_rate": 5.413740458015267e-06,
|
2591 |
+
"loss": 1.1183,
|
2592 |
+
"step": 32400
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 46.76,
|
2596 |
+
"learning_rate": 5.184732824427481e-06,
|
2597 |
+
"loss": 1.1114,
|
2598 |
+
"step": 32500
|
2599 |
+
},
|
2600 |
+
{
|
2601 |
+
"epoch": 46.76,
|
2602 |
+
"eval_cer": 0.09596913871831207,
|
2603 |
+
"eval_loss": 0.2121613770723343,
|
2604 |
+
"eval_runtime": 40.6982,
|
2605 |
+
"eval_samples_per_second": 11.204,
|
2606 |
+
"eval_steps_per_second": 1.401,
|
2607 |
+
"eval_wer": 0.2982482633645424,
|
2608 |
+
"step": 32500
|
2609 |
+
},
|
2610 |
+
{
|
2611 |
+
"epoch": 46.91,
|
2612 |
+
"learning_rate": 4.955725190839695e-06,
|
2613 |
+
"loss": 1.1091,
|
2614 |
+
"step": 32600
|
2615 |
+
},
|
2616 |
+
{
|
2617 |
+
"epoch": 47.05,
|
2618 |
+
"learning_rate": 4.726717557251908e-06,
|
2619 |
+
"loss": 1.1148,
|
2620 |
+
"step": 32700
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 47.19,
|
2624 |
+
"learning_rate": 4.497709923664122e-06,
|
2625 |
+
"loss": 1.0962,
|
2626 |
+
"step": 32800
|
2627 |
+
},
|
2628 |
+
{
|
2629 |
+
"epoch": 47.34,
|
2630 |
+
"learning_rate": 4.268702290076335e-06,
|
2631 |
+
"loss": 1.0984,
|
2632 |
+
"step": 32900
|
2633 |
+
},
|
2634 |
+
{
|
2635 |
+
"epoch": 47.48,
|
2636 |
+
"learning_rate": 4.03969465648855e-06,
|
2637 |
+
"loss": 1.111,
|
2638 |
+
"step": 33000
|
2639 |
+
},
|
2640 |
+
{
|
2641 |
+
"epoch": 47.48,
|
2642 |
+
"eval_cer": 0.09482758620689655,
|
2643 |
+
"eval_loss": 0.21248506009578705,
|
2644 |
+
"eval_runtime": 40.6368,
|
2645 |
+
"eval_samples_per_second": 11.221,
|
2646 |
+
"eval_steps_per_second": 1.403,
|
2647 |
+
"eval_wer": 0.2946239806704923,
|
2648 |
+
"step": 33000
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 47.63,
|
2652 |
+
"learning_rate": 3.810687022900763e-06,
|
2653 |
+
"loss": 1.1031,
|
2654 |
+
"step": 33100
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 47.77,
|
2658 |
+
"learning_rate": 3.581679389312977e-06,
|
2659 |
+
"loss": 1.1159,
|
2660 |
+
"step": 33200
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 47.91,
|
2664 |
+
"learning_rate": 3.352671755725191e-06,
|
2665 |
+
"loss": 1.0905,
|
2666 |
+
"step": 33300
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 48.06,
|
2670 |
+
"learning_rate": 3.1236641221374048e-06,
|
2671 |
+
"loss": 1.1087,
|
2672 |
+
"step": 33400
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 48.2,
|
2676 |
+
"learning_rate": 2.894656488549618e-06,
|
2677 |
+
"loss": 1.0982,
|
2678 |
+
"step": 33500
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 48.2,
|
2682 |
+
"eval_cer": 0.09533931664304834,
|
2683 |
+
"eval_loss": 0.2098563313484192,
|
2684 |
+
"eval_runtime": 40.5946,
|
2685 |
+
"eval_samples_per_second": 11.233,
|
2686 |
+
"eval_steps_per_second": 1.404,
|
2687 |
+
"eval_wer": 0.2956810631229236,
|
2688 |
+
"step": 33500
|
2689 |
+
},
|
2690 |
+
{
|
2691 |
+
"epoch": 48.34,
|
2692 |
+
"learning_rate": 2.66793893129771e-06,
|
2693 |
+
"loss": 1.0947,
|
2694 |
+
"step": 33600
|
2695 |
+
},
|
2696 |
+
{
|
2697 |
+
"epoch": 48.49,
|
2698 |
+
"learning_rate": 2.4389312977099237e-06,
|
2699 |
+
"loss": 1.1102,
|
2700 |
+
"step": 33700
|
2701 |
+
},
|
2702 |
+
{
|
2703 |
+
"epoch": 48.63,
|
2704 |
+
"learning_rate": 2.209923664122137e-06,
|
2705 |
+
"loss": 1.0891,
|
2706 |
+
"step": 33800
|
2707 |
+
},
|
2708 |
+
{
|
2709 |
+
"epoch": 48.78,
|
2710 |
+
"learning_rate": 1.980916030534351e-06,
|
2711 |
+
"loss": 1.0937,
|
2712 |
+
"step": 33900
|
2713 |
+
},
|
2714 |
+
{
|
2715 |
+
"epoch": 48.92,
|
2716 |
+
"learning_rate": 1.7519083969465647e-06,
|
2717 |
+
"loss": 1.109,
|
2718 |
+
"step": 34000
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 48.92,
|
2722 |
+
"eval_cer": 0.09545740828216029,
|
2723 |
+
"eval_loss": 0.20918497443199158,
|
2724 |
+
"eval_runtime": 40.877,
|
2725 |
+
"eval_samples_per_second": 11.155,
|
2726 |
+
"eval_steps_per_second": 1.394,
|
2727 |
+
"eval_wer": 0.29553005134400484,
|
2728 |
+
"step": 34000
|
2729 |
+
},
|
2730 |
+
{
|
2731 |
+
"epoch": 49.06,
|
2732 |
+
"learning_rate": 1.5229007633587786e-06,
|
2733 |
+
"loss": 1.097,
|
2734 |
+
"step": 34100
|
2735 |
+
},
|
2736 |
+
{
|
2737 |
+
"epoch": 49.21,
|
2738 |
+
"learning_rate": 1.2938931297709922e-06,
|
2739 |
+
"loss": 1.0909,
|
2740 |
+
"step": 34200
|
2741 |
+
},
|
2742 |
+
{
|
2743 |
+
"epoch": 49.35,
|
2744 |
+
"learning_rate": 1.0648854961832059e-06,
|
2745 |
+
"loss": 1.1008,
|
2746 |
+
"step": 34300
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 49.5,
|
2750 |
+
"learning_rate": 8.358778625954198e-07,
|
2751 |
+
"loss": 1.0904,
|
2752 |
+
"step": 34400
|
2753 |
+
},
|
2754 |
+
{
|
2755 |
+
"epoch": 49.64,
|
2756 |
+
"learning_rate": 6.068702290076335e-07,
|
2757 |
+
"loss": 1.0905,
|
2758 |
+
"step": 34500
|
2759 |
+
},
|
2760 |
+
{
|
2761 |
+
"epoch": 49.64,
|
2762 |
+
"eval_cer": 0.09526058888364038,
|
2763 |
+
"eval_loss": 0.20883652567863464,
|
2764 |
+
"eval_runtime": 40.602,
|
2765 |
+
"eval_samples_per_second": 11.231,
|
2766 |
+
"eval_steps_per_second": 1.404,
|
2767 |
+
"eval_wer": 0.2953790395650861,
|
2768 |
+
"step": 34500
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 49.78,
|
2772 |
+
"learning_rate": 3.778625954198473e-07,
|
2773 |
+
"loss": 1.0961,
|
2774 |
+
"step": 34600
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 49.93,
|
2778 |
+
"learning_rate": 1.4885496183206107e-07,
|
2779 |
+
"loss": 1.095,
|
2780 |
+
"step": 34700
|
2781 |
+
},
|
2782 |
+
{
|
2783 |
+
"epoch": 50.0,
|
2784 |
+
"step": 34750,
|
2785 |
+
"total_flos": 2.8392187465644065e+20,
|
2786 |
+
"train_loss": 2.2316733406121783,
|
2787 |
+
"train_runtime": 114311.9751,
|
2788 |
+
"train_samples_per_second": 9.737,
|
2789 |
+
"train_steps_per_second": 0.304
|
2790 |
+
}
|
2791 |
+
],
|
2792 |
+
"max_steps": 34750,
|
2793 |
+
"num_train_epochs": 50,
|
2794 |
+
"total_flos": 2.8392187465644065e+20,
|
2795 |
+
"trial_name": null,
|
2796 |
+
"trial_params": null
|
2797 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4af57085f0712099c06c191a8e3123d5fbba4119a615b1c3ec5ef78e066139b2
|
3 |
+
size 2991
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"๊ฐ": 1, "๊ฐ": 2, "๊ฐ": 3, "๊ฐ": 4, "๊ฐ": 5, "๊ฐ": 6, "๊ฐ": 7, "๊ฐ": 8, "๊ฐ": 9, "๊ฐ": 10, "๊ฐ": 11, "๊ฐ": 12, "๊ฐ": 13, "๊ฐ": 14, "๊ฐ": 15, "๊ฐ ": 16, "๊ฐค": 17, "๊ฐฏ": 18, "๊ฐฑ": 19, "๊ฑฐ": 20, "๊ฑฑ": 21, "๊ฑด": 22, "๊ฑท": 23, "๊ฑธ": 24, "๊ฒ": 25, "๊ฒ": 26, "๊ฒ": 27, "๊ฒ": 28, "๊ฒ": 29, "๊ฒ": 30, "๊ฒ": 31, "๊ฒ ": 32, "๊ฒจ": 33, "๊ฒฉ": 34, "๊ฒช": 35, "๊ฒฌ": 36, "๊ฒฐ": 37, "๊ฒธ": 38, "๊ฒน": 39, "๊ฒผ": 40, "๊ฒฝ": 41, "๊ณ": 42, "๊ณ": 43, "๊ณ ": 44, "๊ณก": 45, "๊ณค": 46, "๊ณง": 47, "๊ณจ": 48, "๊ณฐ": 49, "๊ณฑ": 50, "๊ณณ": 51, "๊ณต": 52, "๊ณถ": 53, "๊ณผ": 54, "๊ณฝ": 55, "๊ด": 56, "๊ด": 57, "๊ด": 58, "๊ด": 59, "๊ด": 60, "๊ดญ": 61, "๊ดด": 62, "๊ต": 63, "๊ต": 64, "๊ตฌ": 65, "๊ตญ": 66, "๊ตฐ": 67, "๊ตณ": 68, "๊ตด": 69, "๊ตต": 70, "๊ตถ": 71, "๊ตฝ": 72, "๊ตฟ": 73, "๊ถ": 74, "๊ถ": 75, "๊ถ": 76, "๊ถ": 77, "๊ถค": 78, "๊ท": 79, "๊ท": 80, "๊ท ": 81, "๊ทธ": 82, "๊ทน": 83, "๊ทผ": 84, "๊ธ": 85, "๊ธ": 86, "๊ธ": 87, "๊ธ": 88, "๊ธ": 89, "๊ธฐ": 90, "๊ธด": 91, "๊ธธ": 92, "๊น": 93, "๊น": 94, "๊น": 95, "๊น": 96, "๊น": 97, "๊น": 98, "๊น": 99, "๊น": 100, "๊นก": 101, "๊นฅ": 102, "๊นจ": 103, "๊นฌ": 104, "๊บผ": 105, "๊ป": 106, "๊ป": 107, "๊ป": 108, "๊ป": 109, "๊ปด": 110, "๊ผ": 111, "๊ผฌ": 112, "๊ผญ": 113, "๊ผด": 114, "๊ผผ": 115, "๊ผฝ": 116, "๊ฝ": 117, "๊ฝ": 118, "๊ฝ": 119, "๊ฝ": 120, "๊ฝฅ": 121, "๊พธ": 122, "๊พผ": 123, "๊ฟ": 124, "๊ฟ": 125, "๊ฟ": 126, "๊ฟ": 127, "๊ฟ": 128, "๊ฟจ": 129, "๊ฟฐ": 130, "๋": 131, "๋": 132, "๋": 133, "๋
": 134, "๋": 135, "๋": 136, "๋": 137, "๋": 138, "๋": 139, "๋": 140, "๋": 141, "๋ผ": 142, "๋ฝ": 143, "๋": 144, "๋": 145, "๋": 146, "๋": 147, "๋": 148, "๋ ": 149, "๋ก": 150, "๋จ": 151, "๋ฉ": 152, "๋ซ": 153, "๋ฌ": 154, "๋ญ": 155, "๋ฎ": 156, "๋ฏ": 157, "๋ณ": 158, "๋ด": 159, "๋ธ": 160, "๋ผ": 161, "๋": 162, "๋
": 163, "๋": 164, "๋": 165, "๋": 166, "๋": 167, "๋ฅ": 168, "๋": 169, "๋": 170, "๋": 171, "๋": 172, "๋": 173, "๋": 174, "๋": 175, "๋ฃ": 176, "๋ค": 177, "๋ฅ": 178, "๋จ": 179, "๋ท": 180, "๋
": 181, "๋
": 182, "๋
": 183, "๋
": 184, "๋
": 185, "๋
": 186, "๋
": 187, "๋
ธ": 188, "๋
น": 189, "๋
ผ": 190, "๋": 191, "๋": 192, "๋": 193, "๋": 194, "๋": 195, "๋จ": 196, "๋": 197, "๋จ": 198, "๋ฝ": 199, "๋": 200, "๋": 201, "๋": 202, "๋ ": 203, "๋": 204, "๋ด": 205, "๋": 206, "๋": 207, "๋": 208, "๋": 209, "๋ ": 210, "๋ฅ": 211, "๋ฆ": 212, "๋ช": 213, "๋ฌ": 214, "๋": 215, "๋": 216, "๋": 217, "๋": 218, "๋": 219, "๋": 220, "๋": 221, "๋": 222, "๋ค": 223, "๋ฅ": 224, "๋ฆ": 225, "๋จ": 226, "๋ซ": 227, "๋ฌ": 228, "๋ญ": 229, "๋ฎ": 230, "๋ณ": 231, "๋ด": 232, "๋ต": 233, "๋ท": 234, "๋น": 235, "๋ฟ": 236, "๋": 237, "๋": 238, "๋": 239, "๋": 240, "๋": 241, "๋": 242, "๋": 243, "๋": 244, "๋": 245, "๋ค": 246, "๋ง": 247, "๋ฉ": 248, "๋ซ": 249, "๋ฎ": 250, "๋ฐ": 251, "๋ด": 252, "๋ธ": 253, "๋
": 254, "๋": 255, "๋": 256, "๋
": 257, "๋": 258, "๋": 259, "๋": 260, "๋": 261, "๋": 262, "๋": 263, "๋": 264, "๋": 265, "๋ผ": 266, "๋": 267, "๋": 268, "๋": 269, "๋ ": 270, "๋จ": 271, "๋ฉ": 272, "๋": 273, "๋": 274, "๋": 275, "๋": 276, "๋ ": 277, "๋ฅ": 278, "๋ฌ": 279, "๋": 280, "๋ค": 281, "๋ท": 282, "๋": 283, "๋": 284, "๋": 285, "๋ ": 286, "๋ฃ": 287, "๋ค": 288, "๋ฌ": 289, "๋ญ": 290, "๋ฏ": 291, "๋ฑ": 292, "๋": 293, "๋": 294, "๋": 295, "๋ฅ": 296, "๋จ": 297, "๋ฉ": 298, "๋ช": 299, "๋ฐ": 300, "๋ฑ": 301, "๋ด": 302, "๋ธ": 303, "๋": 304, "๋": 305, "๋
": 306, "๋": 307, "๋": 308, "๋ ": 309, "๋ก": 310, "๋ ": 311, "๋ก": 312, "๋ค": 313, "๋จ": 314, "๋ด": 315, "๋ป": 316, "๋ผ": 317, "๋": 318, "๋": 319, "๋": 320, "๋ฅ": 321, "๋": 322, "๋": 323, "๋ซ": 324, "๋ฐ": 325, "๋ด": 326, "๋จ": 327, "๋ฏ": 328, "๋ธ": 329, "๋ป": 330, "๋": 331, "๋": 332, "๋ ": 333, "๋ค": 334, "๋จ": 335, "๋ต": 336, "๋ผ": 337, "๋ฝ": 338, "๋": 339, "๋": 340, "๋": 341, "๋": 342, "๋": 343, "๋": 344, "๋": 345, "๋": 346, "๋": 347, "๋จ": 348, "๋ซ": 349, "๋ฌ": 350, "๋ญ": 351, "๋ด": 352, "๋ต": 353, "๋": 354, "๋ฌ": 355, "๋ญ": 356, "๋ฐ": 357, "๋ด": 358, "๋ผ": 359, "๋ฝ": 360, "๋ ": 361, "๋ ": 362, "๋ ": 363, "๋ ": 364, "๋ ": 365, "๋ ": 366, "๋ ": 367, "๋ ": 368, "๋ ค": 369, "๋ ฅ": 370, "๋ จ": 371, "๋ ฌ": 372, "๋ ด": 373, "๋ ต": 374, "๋ ท": 375, "๋ ธ": 376, "๋ น": 377, "๋ก": 378, "๋ก": 379, "๋ก": 380, "๋ก ": 381, "๋กค": 382, "๋กฌ": 383, "๋กญ": 384, "๋กฏ": 385, "๋กฑ": 386, "๋ขฐ": 387, "๋ฃ": 388, "๋ฃก": 389, "๋ฃจ": 390, "๋ฃฌ": 391, "๋ฃฐ": 392, "๋ฃธ": 393, "๋ฃน": 394, "๋ค": 395, "๋ค": 396, "๋คผ": 397, "๋ฅ": 398, "๋ฅ": 399, "๋ฅ": 400, "๋ฅ ": 401, "๋ฅญ": 402, "๋ฅด": 403, "๋ฅต": 404, "๋ฅธ": 405, "๋ฅผ": 406, "๋ฆ": 407, "๋ฆ
": 408, "๋ฆ": 409, "๋ฆ": 410, "๋ฆ": 411, "๋ฆฌ": 412, "๋ฆญ": 413, "๋ฆฐ": 414, "๋ฆด": 415, "๋ฆผ": 416, "๋ฆฝ": 417, "๋ฆฟ": 418, "๋ง": 419, "๋ง": 420, "๋ง": 421, "๋ง": 422, "๋ง": 423, "๋ง": 424, "๋ง": 425, "๋ง": 426, "๋ง": 427, "๋ง": 428, "๋ง": 429, "๋ง": 430, "๋ง": 431, "๋งก": 432, "๋งค": 433, "๋งฅ": 434, "๋งจ": 435, "๋งน": 436, "๋งบ": 437, "๋จธ": 438, "๋จน": 439, "๋จผ": 440, "๋ฉ": 441, "๋ฉ": 442, "๋ฉ": 443, "๋ฉ": 444, "๋ฉ": 445, "๋ฉ": 446, "๋ฉ": 447, "๋ฉ": 448, "๋ฉง": 449, "๋ฉฐ": 450, "๋ฉด": 451, "๋ฉธ": 452, "๋ช
": 453, "๋ช": 454, "๋ชจ": 455, "๋ชฉ": 456, "๋ชซ": 457, "๋ชฌ": 458, "๋ชฐ": 459, "๋ชธ": 460, "๋ชป": 461, "๋ชฝ": 462, "๋ฌ": 463, "๋ฌด": 464, "๋ฌต": 465, "๋ฌถ": 466, "๋ฌธ": 467, "๋ฌป": 468, "๋ฌผ": 469, "๋ญ": 470, "๋ญ": 471, "๋ญ": 472, "๋ญ": 473, "๋ญ": 474, "๋ฎค": 475, "๋ฎฌ": 476, "๋ฏ": 477, "๋ฏ": 478, "๋ฏธ": 479, "๋ฏน": 480, "๋ฏผ": 481, "๋ฏฟ": 482, "๋ฐ": 483, "๋ฐ": 484, "๋ฐ": 485, "๋ฐ": 486, "๋ฐ": 487, "๋ฐ": 488, "๋ฐ": 489, "๋ฐ": 490, "๋ฐ": 491, "๋ฐ": 492, "๋ฐ": 493, "๋ฐ": 494, "๋ฐ": 495, "๋ฐค": 496, "๋ฐฅ": 497, "๋ฐฉ": 498, "๋ฐญ": 499, "๋ฐฐ": 500, "๋ฐฑ": 501, "๋ฐด": 502, "๋ฑ": 503, "๋ฑ": 504, "๋ฑ
": 505, "๋ฒ": 506, "๋ฒ
": 507, "๋ฒ": 508, "๋ฒ": 509, "๋ฒ": 510, "๋ฒ": 511, "๋ฒ": 512, "๋ฒ": 513, "๋ฒ ": 514, "๋ฒค": 515, "๋ฒจ": 516, "๋ฒณ": 517, "๋ฒผ": 518, "๋ฒฝ": 519, "๋ณ": 520, "๋ณ": 521, "๋ณ": 522, "๋ณ": 523, "๋ณ": 524, "๋ณ": 525, "๋ณด": 526, "๋ณต": 527, "๋ณถ": 528, "๋ณธ": 529, "๋ณผ": 530, "๋ด": 531, "๋ด
": 532, "๋ด": 533, "๋ด": 534, "๋ด": 535, "๋ดค": 536, "๋ต": 537, "๋ต": 538, "๋ถ": 539, "๋ถ": 540, "๋ถ": 541, "๋ถ": 542, "๋ถ": 543, "๋ถ": 544, "๋ถ": 545, "๋ถ": 546, "๋ถ": 547, "๋ท": 548, "๋ทฐ": 549, "๋ธ": 550, "๋ธ": 551, "๋ธ": 552, "๋น": 553, "๋น
": 554, "๋น": 555, "๋น": 556, "๋น": 557, "๋น": 558, "๋น": 559, "๋น": 560, "๋น ": 561, "๋นจ": 562, "๋นต": 563, "๋นผ": 564, "๋บ": 565, "๋บ": 566, "๋บ": 567, "๋บ": 568, "๋ป": 569, "๋ป": 570, "๋ป": 571, "๋ป": 572, "๋ป": 573, "๋ผ": 574, "๋ฝ": 575, "๋ฝ": 576, "๋ฝ": 577, "๋ฟ": 578, "๋ฟ": 579, "๋ฟ": 580, "์": 581, "์": 582, "์ฉ": 583, "์": 584, "์ฌ": 585, "์ญ": 586, "์ฐ": 587, "์ด": 588, "์ถ": 589, "์ผ": 590, "์ฝ": 591, "์ฟ": 592, "์": 593, "์": 594, "์": 595, "์": 596, "์": 597, "์": 598, "์": 599, "์": 600, "์ค": 601, "์ฌ": 602, "์ต": 603, "์ท": 604, "์": 605, "์": 606, "์": 607, "์ ": 608, "์ฃ": 609, "์ค": 610, "์ฌ": 611, "์ญ": 612, "์ฏ": 613, "์ฐ": 614, "์ฑ": 615, "์ธ": 616, "์น": 617, "์ผ": 618, "์
": 619, "์
": 620, "์
": 621, "์
": 622, "์
": 623, "์
": 624, "์
": 625, "์
จ": 626, "์
ฐ": 627, "์": 628, "์": 629, "์": 630, "์": 631, "์": 632, "์": 633, "์ก": 634, "์ฅ": 635, "์": 636, "์ ": 637, "์ค": 638, "์ผ": 639, "์": 640, "์": 641, "์": 642, "์": 643, "์ ": 644, "์จ": 645, "์ญ": 646, "์ฒ": 647, "์ฌ": 648, "์ฐ": 649, "์ผ": 650, "์ฝ": 651, "์": 652, "์": 653, "์ค": 654, "์จ": 655, "์ฌ": 656, "์ด": 657, "์ต": 658, "์ท": 659, "์น": 660, "์": 661, "์": 662, "์ ": 663, "์ค": 664, "์ซ": 665, "์ฌ": 666, "์ญ": 667, "์ฑ": 668, "์ถ": 669, "์ธ": 670, "์น": 671, "์ผ": 672, "์": 673, "์": 674, "์": 675, "์": 676, "์": 677, "์จ": 678, "์ฉ": 679, "์ฐ": 680, "์ผ": 681, "์": 682, "์": 683, "์": 684, "์ ": 685, "์ค": 686, "์ฐ": 687, "์ด": 688, "์ธ": 689, "์": 690, "์": 691, "์": 692, "์จ": 693, "์ฉ": 694, "์ฌ": 695, "์ธ": 696, "์ป": 697, "์": 698, "์
": 699, "์": 700, "์": 701, "์": 702, "์": 703, "์": 704, "์": 705, "์": 706, "์": 707, "์": 708, "์": 709, "์": 710, "์ ": 711, "์ก": 712, "์ค": 713, "์จ": 714, "์ฑ": 715, "์ต": 716, "์ผ": 717, "์ฝ": 718, "์": 719, "์": 720, "์": 721, "์": 722, "์ด": 723, "์ต": 724, "์ธ": 725, "์น": 726, "์ป": 727, "์ผ": 728, "์ฝ": 729, "์": 730, "์
": 731, "์": 732, "์": 733, "์": 734, "์": 735, "์": 736, "์": 737, "์": 738, "์": 739, "์": 740, "์ ": 741, "์ก": 742, "์ฃ": 743, "์ฌ": 744, "์ญ": 745, "์ฐ": 746, "์ด": 747, "์ท": 748, "์ผ": 749, "์ฝ": 750, "์ฟ": 751, "์": 752, "์": 753, "์": 754, "์": 755, "์": 756, "์ค": 757, "์ฅ": 758, "์จ": 759, "์ฌ": 760, "์ฎ": 761, "์ณ": 762, "์ด": 763, "์ต": 764, "์ท": 765, "์น": 766, "์": 767, "์": 768, "์": 769, "์": 770, "์": 771, "์": 772, "์ธ": 773, "์ผ": 774, "์": 775, "์": 776, "์ฉ": 777, "์ฐ": 778, "์ฑ": 779, "์ด": 780, "์ธ": 781, "์": 782, "์": 783, "์": 784, "์
": 785, "์": 786, "์": 787, "์": 788, "์ ": 789, "์จ": 790, "์ฌ": 791, "์น": 792, "์": 793, "์": 794, "์": 795, "์": 796, "์": 797, "์ ": 798, "์ก": 799, "์ค": 800, "์จ": 801, "์ต": 802, "์ผ": 803, "์": 804, "์": 805, "์": 806, "์": 807, "์": 808, "์": 809, "์ด": 810, "์ต": 811, "์ธ": 812, "์ผ": 813, "์ฝ": 814, "์": 815, "์": 816, "์
": 817, "์": 818, "์": 819, "์": 820, "์": 821, "์": 822, "์": 823, "์": 824, "์": 825, "์": 826, "์": 827, "์ ": 828, "์ก": 829, "์ฃ": 830, "์ฅ": 831, "์ฆ": 832, "์ฌ": 833, "์ญ": 834, "์ฐ": 835, "์ฝ": 836, "์": 837, "์ ": 838, "์ ": 839, "์ ": 840, "์ ": 841, "์ ": 842, "์ ": 843, "์ ": 844, "์ ": 845, "์ ": 846, "์ ": 847, "์ ": 848, "์ ": 849, "์ ": 850, "์ ": 851, "์ ค": 852, "์ ธ": 853, "์ ผ": 854, "์ก": 855, "์กฐ": 856, "์กฑ": 857, "์กด": 858, "์กธ": 859, "์ข": 860, "์ข": 861, "์ข
": 862, "์ข": 863, "์ข": 864, "์ฃ": 865, "์ฃ ": 866, "์ฃผ": 867, "์ฃฝ": 868, "์ค": 869, "์ค": 870, "์ค": 871, "์ค": 872, "์ค": 873, "์คฌ": 874, "์ฅ": 875, "์ฅ": 876, "์ฅ": 877, "์ฅฌ": 878, "์ฆ": 879, "์ฆ": 880, "์ฆ": 881, "์ฆ": 882, "์ฆ": 883, "์ฆ": 884, "์ง": 885, "์ง": 886, "์ง": 887, "์ง": 888, "์ง": 889, "์ง": 890, "์ง": 891, "์ง": 892, "์ง": 893, "์ง": 894, "์ง": 895, "์ง": 896, "์ง": 897, "์ง": 898, "์งง": 899, "์งฌ": 900, "์งธ": 901, "์จ": 902, "์ฉ": 903, "์ฉ": 904, "์ฉ": 905, "์ฉ": 906, "์ชผ": 907, "์ชฝ": 908, "์ซ": 909, "์ซ": 910, "์ญ": 911, "์ฏค": 912, "์ฐ": 913, "์ฐ": 914, "์ฐ": 915, "์ฐข": 916, "์ฐง": 917, "์ฐจ": 918, "์ฐฉ": 919, "์ฐฌ": 920, "์ฐฎ": 921, "์ฐฐ": 922, "์ฐธ": 923, "์ฐป": 924, "์ฐฝ": 925, "์ฐพ": 926, "์ฑ": 927, "์ฑ
": 928, "์ฑ": 929, "์ฑ": 930, "์ฑ": 931, "์ฑ ": 932, "์ฒ": 933, "์ฒ": 934, "์ฒ": 935, "์ฒ ": 936, "์ฒจ": 937, "์ฒฉ": 938, "์ฒซ": 939, "์ฒญ": 940, "์ฒด": 941, "์ฒธ": 942, "์ฒผ": 943, "์ณ": 944, "์ณ": 945, "์ณค": 946, "์ด": 947, "์ด": 948, "์ด": 949, "์ด": 950, "์ด": 951, "์ด": 952, "์ดจ": 953, "์ดฌ": 954, "์ต": 955, "์ถ": 956, "์ถ": 957, "์ถ": 958, "์ถ": 959, "์ถค": 960, "์ถฉ": 961, "์ถฐ": 962, "์ทจ": 963, "์ธ ": 964, "์ธก": 965, "์ธฐ": 966, "์ธต": 967, "์น": 968, "์น": 969, "์น": 970, "์น ": 971, "์นจ": 972, "์นฉ": 973, "์นซ": 974, "์นญ": 975, "์นด": 976, "์นธ": 977, "์นผ": 978, "์บ": 979, "์บ": 980, "์บ": 981, "์บ": 982, "์บ ": 983, "์ปค": 984, "์ปฅ": 985, "์ปจ": 986, "์ปซ": 987, "์ปด": 988, "์ปต": 989, "์ปท": 990, "์ปธ": 991, "์ผ": 992, "์ผ": 993, "์ผ": 994, "์ผ": 995, "์ผ": 996, "์ผ": 997, "์ผฐ": 998, "์ฝ": 999, "์ฝ": 1000, "์ฝ": 1001, "์ฝค": 1002, "์ฝฅ": 1003, "์ฝง": 1004, "์ฝฉ": 1005, "์พ": 1006, "์ฟ": 1007, "์ฟ ": 1008, "์ฟก": 1009, "์ฟจ": 1010, "์ฟผ": 1011, "ํด": 1012, "ํ": 1013, "ํฌ": 1014, "ํฐ": 1015, "ํด": 1016, "ํผ": 1017, "ํค": 1018, "ํฅ": 1019, "ํจ": 1020, "ํฌ": 1021, "ํท": 1022, "ํน": 1023, "ํ": 1024, "ํ": 1025, "ํ": 1026, "ํ": 1027, "ํ": 1028, "ํ": 1029, "ํ": 1030, "ํ": 1031, "ํ": 1032, "ํ": 1033, "ํ ": 1034, "ํฌ": 1035, "ํฑ": 1036, "ํฐ": 1037, "ํฑ": 1038, "ํด": 1039, "ํธ": 1040, "ํ
": 1041, "ํ
": 1042, "ํ
": 1043, "ํ
": 1044, "ํ
": 1045, "ํ
": 1046, "ํ
": 1047, "ํ
ผ": 1048, "ํ ": 1049, "ํก": 1050, "ํค": 1051, "ํจ": 1052, "ํฐ": 1053, "ํต": 1054, "ํด": 1055, "ํฌ": 1056, "ํด": 1057, "ํผ": 1058, "ํ": 1059, "ํ": 1060, "ํ": 1061, "ํฌ": 1062, "ํธ": 1063, "ํน": 1064, "ํผ": 1065, "ํฟ": 1066, "ํ": 1067, "ํ": 1068, "ํฐ": 1069, "ํฑ": 1070, "ํด": 1071, "ํธ": 1072, "ํ": 1073, "ํ
": 1074, "ํ": 1075, "ํ": 1076, "ํ": 1077, "ํ": 1078, "ํ": 1079, "ํ": 1080, "ํก": 1081, "ํจ": 1082, "ํฉ": 1083, "ํฌ": 1084, "ํฐ": 1085, "ํป": 1086, "ํฝ": 1087, "ํผ": 1088, "ํ": 1089, "ํ": 1090, "ํ": 1091, "ํ": 1092, "ํ": 1093, "ํ ": 1094, "ํซ": 1095, "ํด": 1096, "ํธ": 1097, "ํผ": 1098, "ํ": 1099, "ํ": 1100, "ํ": 1101, "ํ": 1102, "ํฌ": 1103, "ํญ": 1104, "ํฐ": 1105, "ํด": 1106, "ํผ": 1107, "ํ": 1108, "ํธ": 1109, "ํน": 1110, "ํผ": 1111, "ํ": 1112, "ํ": 1113, "ํ": 1114, "ํ": 1115, "ํจ": 1116, "ํฐ": 1117, "ํ": 1118, "ํ": 1119, "ํ": 1120, "ํ": 1121, "ํผ": 1122, "ํฝ": 1123, "ํ": 1124, "ํ": 1125, "ํ": 1126, "ํ": 1127, "ํ": 1128, "ํ": 1129, "ํ": 1130, "ํ ": 1131, "ํจ": 1132, "ํฉ": 1133, "ํซ": 1134, "ํญ": 1135, "ํด": 1136, "ํต": 1137, "ํธ": 1138, "ํ": 1139, "ํ": 1140, "ํ": 1141, "ํฅ": 1142, "ํ": 1143, "ํ": 1144, "ํ": 1145, "ํ": 1146, "ํ": 1147, "ํค": 1148, "ํจ": 1149, "ํฌ": 1150, "ํด": 1151, "ํท": 1152, "ํ": 1153, "ํ": 1154, "ํ": 1155, "ํ": 1156, "ํ": 1157, "ํ": 1158, "ํ": 1159, "ํ": 1160, "ํ": 1161, "ํธ": 1162, "ํน": 1163, "ํผ": 1164, "ํ": 1165, "ํ": 1166, "ํ": 1167, "ํ": 1168, "ํ": 1169, "ํ": 1170, "ํ": 1171, "ํ": 1172, "ํฉ": 1173, "ํ": 1174, "ํ": 1175, "ํก": 1176, "ํจ": 1177, "ํ": 1178, "ํ": 1179, "ํ": 1180, "ํค": 1181, "ํจ": 1182, "ํผ": 1183, "ํ": 1184, "ํฉ": 1185, "ํด": 1186, "ํ": 1187, "ํ": 1188, "ํ": 1189, "ํ": 1190, "ํ": 1191, "ํ": 1192, "ํ ": 1193, "ํก": 1194, "ํฅ": 1195, "ํฉ": 1196, "ํฌ": 1197, "ํฐ": 1198, "ํ": 1199, "ํ": 1200, "ํ": 1201, "ํ": 1202, "|": 0, "[UNK]": 1203, "[PAD]": 1204}
|