Update README.md
Browse files
README.md
CHANGED
@@ -1,39 +1,30 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
-
-
|
|
|
4 |
datasets:
|
5 |
-
- oscar-corpus/OSCAR-2109
|
6 |
-
model-index:
|
7 |
-
- name: runs
|
8 |
-
results: []
|
9 |
---
|
10 |
|
11 |
-
|
12 |
-
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
|
15 |
|
16 |
-
This model was trained
|
17 |
-
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 1.4556
|
19 |
|
20 |
-
## Model
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
More information needed
|
27 |
-
|
28 |
-
## Training and evaluation data
|
29 |
-
|
30 |
-
More information needed
|
31 |
|
32 |
## Training procedure
|
33 |
|
34 |
### Training hyperparameters
|
35 |
|
36 |
The following hyperparameters were used during training:
|
|
|
37 |
- learning_rate: 0.0002
|
38 |
- train_batch_size: 128
|
39 |
- eval_batch_size: 128
|
@@ -50,40 +41,80 @@ The following hyperparameters were used during training:
|
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss |
|
53 |
-
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
- Transformers 4.13.0.dev0
|
89 |
- Pytorch 1.9.0+cu102
|
|
|
1 |
---
|
2 |
+
language: lo
|
3 |
tags:
|
4 |
+
- lao-roberta-base
|
5 |
+
license: mit
|
6 |
datasets:
|
7 |
+
- oscar-corpus/OSCAR-2109
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
+
## Lao RoBERTa Base
|
|
|
11 |
|
12 |
+
Lao RoBERTa Base is a masked language model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. It was trained on the [OSCAR-2109](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset, specifically the `deduplicated_lo` subset. The model was trained from scratch and achieved an evaluation loss of 1.4556 and an evaluation perplexity of 4.287.
|
13 |
|
14 |
+
This model was trained using HuggingFace's PyTorch framework and the training script found [here](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py). All training was done on a TPUv3-8, provided by the [TPU Research Cloud](https://sites.research.google/trc/about/) program. You can view the detailed training results in the [Training metrics](https://huggingface.co/w11wo/lao-roberta-base/tensorboard) tab, logged via Tensorboard.
|
|
|
|
|
15 |
|
16 |
+
## Model
|
17 |
|
18 |
+
| Model | #params | Arch. | Training/Validation data (text) |
|
19 |
+
| ------------------ | ------- | ------- | ------------------------------------ |
|
20 |
+
| `lao-roberta-base` | 124M | RoBERTa | OSCAR-2109 `deduplicated_lo` Dataset |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
## Training procedure
|
23 |
|
24 |
### Training hyperparameters
|
25 |
|
26 |
The following hyperparameters were used during training:
|
27 |
+
|
28 |
- learning_rate: 0.0002
|
29 |
- train_batch_size: 128
|
30 |
- eval_batch_size: 128
|
|
|
41 |
### Training results
|
42 |
|
43 |
| Training Loss | Epoch | Step | Validation Loss |
|
44 |
+
| :-----------: | :---: | :--: | :-------------: |
|
45 |
+
| No log | 1.0 | 216 | 5.8586 |
|
46 |
+
| No log | 2.0 | 432 | 5.5095 |
|
47 |
+
| 6.688 | 3.0 | 648 | 5.3976 |
|
48 |
+
| 6.688 | 4.0 | 864 | 5.3562 |
|
49 |
+
| 5.3629 | 5.0 | 1080 | 5.2912 |
|
50 |
+
| 5.3629 | 6.0 | 1296 | 5.2385 |
|
51 |
+
| 5.22 | 7.0 | 1512 | 5.1955 |
|
52 |
+
| 5.22 | 8.0 | 1728 | 5.1785 |
|
53 |
+
| 5.22 | 9.0 | 1944 | 5.1327 |
|
54 |
+
| 5.1248 | 10.0 | 2160 | 5.1243 |
|
55 |
+
| 5.1248 | 11.0 | 2376 | 5.0889 |
|
56 |
+
| 5.0591 | 12.0 | 2592 | 5.0732 |
|
57 |
+
| 5.0591 | 13.0 | 2808 | 5.0417 |
|
58 |
+
| 5.0094 | 14.0 | 3024 | 5.0388 |
|
59 |
+
| 5.0094 | 15.0 | 3240 | 4.9299 |
|
60 |
+
| 5.0094 | 16.0 | 3456 | 4.2991 |
|
61 |
+
| 4.7527 | 17.0 | 3672 | 3.6541 |
|
62 |
+
| 4.7527 | 18.0 | 3888 | 2.7826 |
|
63 |
+
| 3.4431 | 19.0 | 4104 | 2.2796 |
|
64 |
+
| 3.4431 | 20.0 | 4320 | 2.0213 |
|
65 |
+
| 2.2803 | 21.0 | 4536 | 1.8809 |
|
66 |
+
| 2.2803 | 22.0 | 4752 | 1.7615 |
|
67 |
+
| 2.2803 | 23.0 | 4968 | 1.6925 |
|
68 |
+
| 1.8601 | 24.0 | 5184 | 1.6205 |
|
69 |
+
| 1.8601 | 25.0 | 5400 | 1.5751 |
|
70 |
+
| 1.6697 | 26.0 | 5616 | 1.5391 |
|
71 |
+
| 1.6697 | 27.0 | 5832 | 1.5200 |
|
72 |
+
| 1.5655 | 28.0 | 6048 | 1.4866 |
|
73 |
+
| 1.5655 | 29.0 | 6264 | 1.4656 |
|
74 |
+
| 1.5655 | 30.0 | 6480 | 1.4627 |
|
75 |
+
|
76 |
+
## How to Use
|
77 |
+
|
78 |
+
### As Masked Language Model
|
79 |
+
|
80 |
+
```python
|
81 |
+
from transformers import pipeline
|
82 |
+
|
83 |
+
pretrained_name = "w11wo/lao-roberta-base"
|
84 |
+
prompt = "REPLACE WITH MASKED PROMPT"
|
85 |
+
|
86 |
+
fill_mask = pipeline(
|
87 |
+
"fill-mask",
|
88 |
+
model=pretrained_name,
|
89 |
+
tokenizer=pretrained_name
|
90 |
+
)
|
91 |
+
|
92 |
+
fill_mask(prompt)
|
93 |
+
```
|
94 |
+
|
95 |
+
### Feature Extraction in PyTorch
|
96 |
+
|
97 |
+
```python
|
98 |
+
from transformers import RobertaModel, RobertaTokenizerFast
|
99 |
+
|
100 |
+
pretrained_name = "w11wo/lao-roberta-base"
|
101 |
+
model = RobertaModel.from_pretrained(pretrained_name)
|
102 |
+
tokenizer = RobertaTokenizerFast.from_pretrained(pretrained_name)
|
103 |
+
|
104 |
+
prompt = "ສະບາຍດີຊາວໂລກ."
|
105 |
+
encoded_input = tokenizer(prompt, return_tensors='pt')
|
106 |
+
output = model(**encoded_input)
|
107 |
+
```
|
108 |
+
|
109 |
+
## Disclaimer
|
110 |
+
|
111 |
+
Do consider the biases which came from pre-training datasets that may be carried over into the results of this model.
|
112 |
+
|
113 |
+
## Author
|
114 |
+
|
115 |
+
Lao RoBERTa Base was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google's TPU-RC.
|
116 |
+
|
117 |
+
## Framework versions
|
118 |
|
119 |
- Transformers 4.13.0.dev0
|
120 |
- Pytorch 1.9.0+cu102
|