w11wo commited on
Commit
c2fbb2b
1 Parent(s): 0cc390e

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ widget:
14
+ - text: so i am currently stuck in an automatic revolving door .
15
+ - text: ah my favorite pastime , watching logan and crying
16
+ - text: i have a new instagram account ! go give theollyjackson a follow
17
+ - text: guess they are not rich enough to get their precious cars in a garage .
18
+ - text: last day in my twenties
19
+ pipeline_tag: text-classification
20
+ inference: true
21
+ base_model: BAAI/bge-small-en-v1.5
22
+ model-index:
23
+ - name: SetFit with BAAI/bge-small-en-v1.5
24
+ results:
25
+ - task:
26
+ type: text-classification
27
+ name: Text Classification
28
+ dataset:
29
+ name: Unknown
30
+ type: unknown
31
+ split: test
32
+ metrics:
33
+ - type: accuracy
34
+ value: 0.6617812852311161
35
+ name: Accuracy
36
+ - type: f1
37
+ value: 0.3951612903225807
38
+ name: F1
39
+ - type: precision
40
+ value: 0.2890855457227139
41
+ name: Precision
42
+ - type: recall
43
+ value: 0.6242038216560509
44
+ name: Recall
45
+ ---
46
+
47
+ # SetFit with BAAI/bge-small-en-v1.5
48
+
49
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
50
+
51
+ The model has been trained using an efficient few-shot learning technique that involves:
52
+
53
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
54
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
55
+
56
+ ## Model Details
57
+
58
+ ### Model Description
59
+ - **Model Type:** SetFit
60
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
61
+ - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
62
+ - **Maximum Sequence Length:** 512 tokens
63
+ - **Number of Classes:** 2 classes
64
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
65
+ <!-- - **Language:** Unknown -->
66
+ <!-- - **License:** Unknown -->
67
+
68
+ ### Model Sources
69
+
70
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
71
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
72
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
73
+
74
+ ### Model Labels
75
+ | Label | Examples |
76
+ |:--------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
77
+ | NON_SARCASTIC | <ul><li>'so the newer devices have the ios screenshot i m still on ios but my ipad mini 1 st gen shows the ios screenshot . odd .'</li><li>'why do amazon need a test authorisation when i add a new payment card , as well as the authorisation they get when i actually use it ?'</li><li>'waterboarding sounds like a lot of fun until you find out what it is'</li></ul> |
78
+ | SARCASTIC | <ul><li>"have you been reading long ? you are not very good at it . it has nothing to do with who i like , especially since i am not a fan of corbyn anyway . it ' s that in one case someone was literally slapped in the face , and in the other someone wore a milkshake . battery > being annoying"</li><li>'wish one of the many people dressed as killers were actually one n killed me'</li><li>'is it even christmas if there isn t a fight with neighbours and a broken wrist ?'</li></ul> |
79
+
80
+ ## Evaluation
81
+
82
+ ### Metrics
83
+ | Label | Accuracy | F1 | Precision | Recall |
84
+ |:--------|:---------|:-------|:----------|:-------|
85
+ | **all** | 0.6618 | 0.3952 | 0.2891 | 0.6242 |
86
+
87
+ ## Uses
88
+
89
+ ### Direct Use for Inference
90
+
91
+ First install the SetFit library:
92
+
93
+ ```bash
94
+ pip install setfit
95
+ ```
96
+
97
+ Then you can load this model and run inference.
98
+
99
+ ```python
100
+ from setfit import SetFitModel
101
+
102
+ # Download from the 🤗 Hub
103
+ model = SetFitModel.from_pretrained("w11wo/bge-small-en-v1.5-isarcasm")
104
+ # Run inference
105
+ preds = model("last day in my twenties")
106
+ ```
107
+
108
+ <!--
109
+ ### Downstream Use
110
+
111
+ *List how someone could finetune this model on their own dataset.*
112
+ -->
113
+
114
+ <!--
115
+ ### Out-of-Scope Use
116
+
117
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
118
+ -->
119
+
120
+ <!--
121
+ ## Bias, Risks and Limitations
122
+
123
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
124
+ -->
125
+
126
+ <!--
127
+ ### Recommendations
128
+
129
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
130
+ -->
131
+
132
+ ## Training Details
133
+
134
+ ### Training Set Metrics
135
+ | Training set | Min | Median | Max |
136
+ |:-------------|:----|:--------|:----|
137
+ | Word count | 2 | 19.8489 | 63 |
138
+
139
+ | Label | Training Sample Count |
140
+ |:--------------|:----------------------|
141
+ | NON_SARCASTIC | 609 |
142
+ | SARCASTIC | 609 |
143
+
144
+ ### Training Hyperparameters
145
+ - batch_size: (256, 16)
146
+ - num_epochs: (3, 8)
147
+ - max_steps: -1
148
+ - sampling_strategy: oversampling
149
+ - body_learning_rate: (2e-05, 5e-06)
150
+ - head_learning_rate: 0.002
151
+ - loss: CosineSimilarityLoss
152
+ - distance_metric: cosine_distance
153
+ - margin: 0.25
154
+ - end_to_end: True
155
+ - use_amp: False
156
+ - warmup_proportion: 0.1
157
+ - l2_weight: 0.01
158
+ - seed: 42
159
+ - eval_max_steps: -1
160
+ - load_best_model_at_end: True
161
+
162
+ ### Training Results
163
+ | Epoch | Step | Training Loss | Validation Loss |
164
+ |:------:|:----:|:-------------:|:---------------:|
165
+ | 0.0003 | 1 | 0.2571 | - |
166
+ | 0.0172 | 50 | 0.251 | - |
167
+ | 0.0344 | 100 | 0.2556 | - |
168
+ | 0.0517 | 150 | 0.2513 | - |
169
+ | 0.0689 | 200 | 0.2531 | - |
170
+ | 0.0861 | 250 | 0.2518 | - |
171
+ | 0.1033 | 300 | 0.2553 | - |
172
+ | 0.1206 | 350 | 0.2501 | - |
173
+ | 0.1378 | 400 | 0.2546 | - |
174
+ | 0.1550 | 450 | 0.2506 | - |
175
+ | 0.1722 | 500 | 0.2317 | - |
176
+ | 0.1895 | 550 | 0.093 | - |
177
+ | 0.2067 | 600 | 0.0139 | - |
178
+ | 0.2239 | 650 | 0.0166 | - |
179
+ | 0.2411 | 700 | 0.0053 | - |
180
+ | 0.2584 | 750 | 0.0013 | - |
181
+ | 0.2756 | 800 | 0.0121 | - |
182
+ | 0.2928 | 850 | 0.0096 | - |
183
+ | 0.3100 | 900 | 0.0043 | - |
184
+ | 0.3272 | 950 | 0.0014 | - |
185
+ | 0.3445 | 1000 | 0.0009 | - |
186
+ | 0.3617 | 1050 | 0.0117 | - |
187
+ | 0.3789 | 1100 | 0.0144 | - |
188
+ | 0.3961 | 1150 | 0.0084 | - |
189
+ | 0.4134 | 1200 | 0.0006 | - |
190
+ | 0.4306 | 1250 | 0.0005 | - |
191
+ | 0.4478 | 1300 | 0.0081 | - |
192
+ | 0.4650 | 1350 | 0.0144 | - |
193
+ | 0.4823 | 1400 | 0.0045 | - |
194
+ | 0.4995 | 1450 | 0.0042 | - |
195
+ | 0.5167 | 1500 | 0.0005 | - |
196
+ | 0.5339 | 1550 | 0.003 | - |
197
+ | 0.5512 | 1600 | 0.0004 | - |
198
+ | 0.5684 | 1650 | 0.0005 | - |
199
+ | 0.5856 | 1700 | 0.0004 | - |
200
+ | 0.6028 | 1750 | 0.0004 | - |
201
+ | 0.6200 | 1800 | 0.0026 | - |
202
+ | 0.6373 | 1850 | 0.0004 | - |
203
+ | 0.6545 | 1900 | 0.0004 | - |
204
+ | 0.6717 | 1950 | 0.0003 | - |
205
+ | 0.6889 | 2000 | 0.0014 | - |
206
+ | 0.7062 | 2050 | 0.0004 | - |
207
+ | 0.7234 | 2100 | 0.0003 | - |
208
+ | 0.7406 | 2150 | 0.0003 | - |
209
+ | 0.7578 | 2200 | 0.0004 | - |
210
+ | 0.7751 | 2250 | 0.0003 | - |
211
+ | 0.7923 | 2300 | 0.0003 | - |
212
+ | 0.8095 | 2350 | 0.0003 | - |
213
+ | 0.8267 | 2400 | 0.0003 | - |
214
+ | 0.8440 | 2450 | 0.0003 | - |
215
+ | 0.8612 | 2500 | 0.0003 | - |
216
+ | 0.8784 | 2550 | 0.0003 | - |
217
+ | 0.8956 | 2600 | 0.0003 | - |
218
+ | 0.9128 | 2650 | 0.0003 | - |
219
+ | 0.9301 | 2700 | 0.0003 | - |
220
+ | 0.9473 | 2750 | 0.0004 | - |
221
+ | 0.9645 | 2800 | 0.0003 | - |
222
+ | 0.9817 | 2850 | 0.0003 | - |
223
+ | 0.9990 | 2900 | 0.0036 | - |
224
+ | 1.0162 | 2950 | 0.0003 | - |
225
+ | 1.0334 | 3000 | 0.0003 | - |
226
+ | 1.0506 | 3050 | 0.0002 | - |
227
+ | 1.0679 | 3100 | 0.0002 | - |
228
+ | 1.0851 | 3150 | 0.0002 | - |
229
+ | 1.1023 | 3200 | 0.0002 | - |
230
+ | 1.1195 | 3250 | 0.0002 | - |
231
+ | 1.1368 | 3300 | 0.0003 | - |
232
+ | 1.1540 | 3350 | 0.0004 | - |
233
+ | 1.1712 | 3400 | 0.0002 | - |
234
+ | 1.1884 | 3450 | 0.0002 | - |
235
+ | 1.2056 | 3500 | 0.0002 | - |
236
+ | 1.2229 | 3550 | 0.0002 | - |
237
+ | 1.2401 | 3600 | 0.0002 | - |
238
+ | 1.2573 | 3650 | 0.0009 | - |
239
+ | 1.2745 | 3700 | 0.0002 | - |
240
+ | 1.2918 | 3750 | 0.0002 | - |
241
+ | 1.3090 | 3800 | 0.0002 | - |
242
+ | 1.3262 | 3850 | 0.0002 | - |
243
+ | 1.3434 | 3900 | 0.0002 | - |
244
+ | 1.3607 | 3950 | 0.0002 | - |
245
+ | 1.3779 | 4000 | 0.0002 | - |
246
+ | 1.3951 | 4050 | 0.0002 | - |
247
+ | 1.4123 | 4100 | 0.0002 | - |
248
+ | 1.4296 | 4150 | 0.0002 | - |
249
+ | 1.4468 | 4200 | 0.0003 | - |
250
+ | 1.4640 | 4250 | 0.0002 | - |
251
+ | 1.4812 | 4300 | 0.0002 | - |
252
+ | 1.4984 | 4350 | 0.0002 | - |
253
+ | 1.5157 | 4400 | 0.0002 | - |
254
+ | 1.5329 | 4450 | 0.0002 | - |
255
+ | 1.5501 | 4500 | 0.0002 | - |
256
+ | 1.5673 | 4550 | 0.0002 | - |
257
+ | 1.5846 | 4600 | 0.0002 | - |
258
+ | 1.6018 | 4650 | 0.0002 | - |
259
+ | 1.6190 | 4700 | 0.0002 | - |
260
+ | 1.6362 | 4750 | 0.0002 | - |
261
+ | 1.6535 | 4800 | 0.0002 | - |
262
+ | 1.6707 | 4850 | 0.0002 | - |
263
+ | 1.6879 | 4900 | 0.0002 | - |
264
+ | 1.7051 | 4950 | 0.0002 | - |
265
+ | 1.7224 | 5000 | 0.0003 | - |
266
+ | 1.7396 | 5050 | 0.0002 | - |
267
+ | 1.7568 | 5100 | 0.0002 | - |
268
+ | 1.7740 | 5150 | 0.0002 | - |
269
+ | 1.7913 | 5200 | 0.0002 | - |
270
+ | 1.8085 | 5250 | 0.0002 | - |
271
+ | 1.8257 | 5300 | 0.0038 | - |
272
+ | 1.8429 | 5350 | 0.0002 | - |
273
+ | 1.8601 | 5400 | 0.0002 | - |
274
+ | 1.8774 | 5450 | 0.0002 | - |
275
+ | 1.8946 | 5500 | 0.0002 | - |
276
+ | 1.9118 | 5550 | 0.0002 | - |
277
+ | 1.9290 | 5600 | 0.0005 | - |
278
+ | 1.9463 | 5650 | 0.0002 | - |
279
+ | 1.9635 | 5700 | 0.0002 | - |
280
+ | 1.9807 | 5750 | 0.0002 | - |
281
+ | 1.9979 | 5800 | 0.0002 | - |
282
+ | 2.0152 | 5850 | 0.0001 | - |
283
+ | 2.0324 | 5900 | 0.0002 | - |
284
+ | 2.0496 | 5950 | 0.0002 | - |
285
+ | 2.0668 | 6000 | 0.0002 | - |
286
+ | 2.0841 | 6050 | 0.0002 | - |
287
+ | 2.1013 | 6100 | 0.0002 | - |
288
+ | 2.1185 | 6150 | 0.0002 | - |
289
+ | 2.1357 | 6200 | 0.0001 | - |
290
+ | 2.1529 | 6250 | 0.0002 | - |
291
+ | 2.1702 | 6300 | 0.0002 | - |
292
+ | 2.1874 | 6350 | 0.0001 | - |
293
+ | 2.2046 | 6400 | 0.0001 | - |
294
+ | 2.2218 | 6450 | 0.0001 | - |
295
+ | 2.2391 | 6500 | 0.0001 | - |
296
+ | 2.2563 | 6550 | 0.0001 | - |
297
+ | 2.2735 | 6600 | 0.0001 | - |
298
+ | 2.2907 | 6650 | 0.0001 | - |
299
+ | 2.3080 | 6700 | 0.0001 | - |
300
+ | 2.3252 | 6750 | 0.0001 | - |
301
+ | 2.3424 | 6800 | 0.0001 | - |
302
+ | 2.3596 | 6850 | 0.0001 | - |
303
+ | 2.3769 | 6900 | 0.0001 | - |
304
+ | 2.3941 | 6950 | 0.0001 | - |
305
+ | 2.4113 | 7000 | 0.0001 | - |
306
+ | 2.4285 | 7050 | 0.0001 | - |
307
+ | 2.4457 | 7100 | 0.0001 | - |
308
+ | 2.4630 | 7150 | 0.0001 | - |
309
+ | 2.4802 | 7200 | 0.0001 | - |
310
+ | 2.4974 | 7250 | 0.0001 | - |
311
+ | 2.5146 | 7300 | 0.0001 | - |
312
+ | 2.5319 | 7350 | 0.0001 | - |
313
+ | 2.5491 | 7400 | 0.0001 | - |
314
+ | 2.5663 | 7450 | 0.0001 | - |
315
+ | 2.5835 | 7500 | 0.0001 | - |
316
+ | 2.6008 | 7550 | 0.0001 | - |
317
+ | 2.6180 | 7600 | 0.0001 | - |
318
+ | 2.6352 | 7650 | 0.0001 | - |
319
+ | 2.6524 | 7700 | 0.0001 | - |
320
+ | 2.6697 | 7750 | 0.0001 | - |
321
+ | 2.6869 | 7800 | 0.0001 | - |
322
+ | 2.7041 | 7850 | 0.0001 | - |
323
+ | 2.7213 | 7900 | 0.0001 | - |
324
+ | 2.7385 | 7950 | 0.0001 | - |
325
+ | 2.7558 | 8000 | 0.0001 | - |
326
+ | 2.7730 | 8050 | 0.0001 | - |
327
+ | 2.7902 | 8100 | 0.0001 | - |
328
+ | 2.8074 | 8150 | 0.0001 | - |
329
+ | 2.8247 | 8200 | 0.0001 | - |
330
+ | 2.8419 | 8250 | 0.0001 | - |
331
+ | 2.8591 | 8300 | 0.0001 | - |
332
+ | 2.8763 | 8350 | 0.0001 | - |
333
+ | 2.8936 | 8400 | 0.0001 | - |
334
+ | 2.9108 | 8450 | 0.0001 | - |
335
+ | 2.9280 | 8500 | 0.0001 | - |
336
+ | 2.9452 | 8550 | 0.0001 | - |
337
+ | 2.9625 | 8600 | 0.0001 | - |
338
+ | 2.9797 | 8650 | 0.0001 | - |
339
+ | 2.9969 | 8700 | 0.0001 | - |
340
+
341
+ ### Framework Versions
342
+ - Python: 3.10.12
343
+ - SetFit: 1.0.1
344
+ - Sentence Transformers: 2.2.2
345
+ - Transformers: 4.32.0
346
+ - PyTorch: 2.1.1+cu121
347
+ - Datasets: 2.14.5
348
+ - Tokenizers: 0.13.3
349
+
350
+ ## Citation
351
+
352
+ ### BibTeX
353
+ ```bibtex
354
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
355
+ doi = {10.48550/ARXIV.2209.11055},
356
+ url = {https://arxiv.org/abs/2209.11055},
357
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
358
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
359
+ title = {Efficient Few-Shot Learning Without Prompts},
360
+ publisher = {arXiv},
361
+ year = {2022},
362
+ copyright = {Creative Commons Attribution 4.0 International}
363
+ }
364
+ ```
365
+
366
+ <!--
367
+ ## Glossary
368
+
369
+ *Clearly define terms in order to be accessible across audiences.*
370
+ -->
371
+
372
+ <!--
373
+ ## Model Card Authors
374
+
375
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
376
+ -->
377
+
378
+ <!--
379
+ ## Model Card Contact
380
+
381
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
382
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/BAAI_bge-small-en-v1.5/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.32.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "NON_SARCASTIC",
5
+ "SARCASTIC"
6
+ ]
7
+ }
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4cb984f843ea63d1bb32d45f2c03ca6f598d99108d8dc9507f41733668dd5ec
3
+ size 4628
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23b3b877c0f8d4dbb3f0747cb94e4f8ef3214f81a0c20fed25e79cfa7239ac12
3
+ size 133507174
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 512,
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "BertTokenizer",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff