Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +4 -4
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 289.34 +/- 23.86
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f176965eb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f176965eb90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f176965ec20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f176965ecb0>", "_build": "<function ActorCriticPolicy._build at 0x7f176965ed40>", "forward": "<function ActorCriticPolicy.forward at 0x7f176965edd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f176965ee60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f176965eef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f176965ef80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1769662050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17696620e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f17696af600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653210897.3851593, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzQArvMeSqD5OjM67mij5vgT1aL1Nwyy7AAAAAAAAAACAHne997VrP/aRuL2aASG/VxHKvR7IAL0AAAAAAAAAAGY7jLzDqVK6xhvEtk6bZrIEhyA6lX/lNQAAgD8AAIA/5jsYPeVyrD7yeOO6usbnviW+qjyKaVG8AAAAAAAAAABQIn6+6XahP0HxHL/zaC2/2V3dvnK1iL4AAAAAAAAAADP8XT5bos+8Av5RPbIdvLtHUjy+rlqRvAAAAAAAAAAAmq0KvEiOubzfBEa+rKFuvXRo4D1ppZ8+AACAPwAAgD+aSW+7NfafPx4nVjzdli6/pVSTPauDeL0AAAAAAAAAAJqjJzyE25I9Pcc1PnKM0r4WHhs+3B+WPQAAAAAAAAAAzQzPucPxWLoy8Va4XX2GswR+WjvzKXw3AACAPwAAgD8zUgo+j0QJPhUc6L5n6J6+5fiMvdGagb4AAAAAAAAAAM2E0TwJD7s/ga2TPpbkPz6wP748kb8vPgAAAAAAAAAArZUgPpxOdLzqqw460IfntwB3071/hD65AACAPwAAAABmtBM8XFNkurHjOLNfYE0wCJPfuvoqxzMAAIA/AACAPzNB+jxc5yq6F3YwM6xB9K4Dxqe7iMTUswAAgD8AAIA/M2MDPCmgf7pNnE+2pER9sVLfSTvLcnw1AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIT1FDhE6cECUhpRSlIwBbJRLyYwBdJRHQKvY9a3Zwn91fZQoaAZoCWgPQwhc598uu+JwQJSGlFKUaBVL2WgWR0Cr2ToaLn9vdX2UKGgGaAloD0MIqwfMQyYCc0CUhpRSlGgVS71oFkdAq9k+YfGMoHV9lChoBmgJaA9DCIaSyalddHJAlIaUUpRoFUvLaBZHQKvZV83uNPx1fZQoaAZoCWgPQwjFPCtpBc1xQJSGlFKUaBVL1GgWR0Cr2ZW9lEqldX2UKGgGaAloD0MIsoNKXEdjcUCUhpRSlGgVS85oFkdAq9mMdzXBg3V9lChoBmgJaA9DCFGDaRi+H25AlIaUUpRoFUvUaBZHQKvZ5geii7F1fZQoaAZoCWgPQwhRgv5CDxVyQJSGlFKUaBVL3WgWR0Cr2fpQDV6NdX2UKGgGaAloD0MINGlTdQ+3cUCUhpRSlGgVS8doFkdAq9pPbdrO7nV9lChoBmgJaA9DCKIo0CcyynFAlIaUUpRoFUvRaBZHQKvai1baAWl1fZQoaAZoCWgPQwhuoSsRKNJxQJSGlFKUaBVL1mgWR0Cr2qbeEZivdX2UKGgGaAloD0MI4h5LH3o7ckCUhpRSlGgVS9xoFkdAq9q2WyC4BnV9lChoBmgJaA9DCLBZLhudRHFAlIaUUpRoFUu4aBZHQKva5kzXSSh1fZQoaAZoCWgPQwi0dXCwty9yQJSGlFKUaBVLzmgWR0Cr2w/mLcbjdX2UKGgGaAloD0MI295uSY5rckCUhpRSlGgVS8BoFkdAq9shIYm9hHV9lChoBmgJaA9DCOay0Tl/iHFAlIaUUpRoFUv4aBZHQKvbXcafjCJ1fZQoaAZoCWgPQwgb8WQ3M31vQJSGlFKUaBVLyWgWR0Cr24Y287IUdX2UKGgGaAloD0MI3EqvzUbUcUCUhpRSlGgVS9RoFkdAq9uuLxZuAXV9lChoBmgJaA9DCLHeqBUm3HFAlIaUUpRoFUvNaBZHQKvb9Ba9sad1fZQoaAZoCWgPQwiqRxrcFoByQJSGlFKUaBVL0WgWR0Cr3Amx2SuAdX2UKGgGaAloD0MI0Xe3soRVc0CUhpRSlGgVS+loFkdAq9wM0gr6L3V9lChoBmgJaA9DCPFiYYjcOHBAlIaUUpRoFUuwaBZHQKvcFa4+bEx1fZQoaAZoCWgPQwhm+E83UI9uQJSGlFKUaBVLzmgWR0Cr3FBl18sudX2UKGgGaAloD0MIafzCK8m5b0CUhpRSlGgVS8poFkdAq9yztw71ZnV9lChoBmgJaA9DCMKFPIJbnnJAlIaUUpRoFUvKaBZHQKvl7AGB4D91fZQoaAZoCWgPQwj7k/jcycRzQJSGlFKUaBVL02gWR0Cr5ilXzUZvdX2UKGgGaAloD0MIiQyreOP/ckCUhpRSlGgVS8xoFkdAq+ZAiC8OC3V9lChoBmgJaA9DCLITXoKT5nNAlIaUUpRoFUviaBZHQKvmSxu89Oh1fZQoaAZoCWgPQwi9NhsrsYBzQJSGlFKUaBVLwGgWR0Cr5k5Tho/SdX2UKGgGaAloD0MI8guvJHmvb0CUhpRSlGgVS8hoFkdAq+ZTVYp2EHV9lChoBmgJaA9DCJAQ5Qta5k9AlIaUUpRoFUuIaBZHQKvmbr30wrV1fZQoaAZoCWgPQwg4SfPHNPVzQJSGlFKUaBVLzWgWR0Cr5qLThHbzdX2UKGgGaAloD0MIvY44ZEM7ckCUhpRSlGgVS9NoFkdAq+bbYdyT6nV9lChoBmgJaA9DCL0bCwrDFHJAlIaUUpRoFUvRaBZHQKvm+TAWSEF1fZQoaAZoCWgPQwiBQj19hPVyQJSGlFKUaBVLvmgWR0Cr5xZB9kSVdX2UKGgGaAloD0MIq1yo/KudcECUhpRSlGgVS8doFkdAq+czEtNBW3V9lChoBmgJaA9DCD1gHjKlyXNAlIaUUpRoFUvNaBZHQKvnTXKbKA91fZQoaAZoCWgPQwh8DFacarpxQJSGlFKUaBVL0mgWR0Cr55qjzqbCdX2UKGgGaAloD0MIy2YOSS00U0CUhpRSlGgVS5ZoFkdAq+fsk2P1c3V9lChoBmgJaA9DCDLMCdpke3JAlIaUUpRoFUu7aBZHQKvoPj/+85F1fZQoaAZoCWgPQwiifEELCYpzQJSGlFKUaBVL2WgWR0Cr6FoPbwjMdX2UKGgGaAloD0MI6dfWT3+jcUCUhpRSlGgVS8RoFkdAq+hyVpsXSHV9lChoBmgJaA9DCD2BsFOsNnJAlIaUUpRoFUv2aBZHQKvodbj94u91fZQoaAZoCWgPQwhy/FBpxEZuQJSGlFKUaBVLy2gWR0Cr6KBvrGBGdX2UKGgGaAloD0MIxoUDIVmhcUCUhpRSlGgVS9VoFkdAq+jhcNYr8XV9lChoBmgJaA9DCIjyBS0kEHNAlIaUUpRoFUvpaBZHQKvo9ZK3/gl1fZQoaAZoCWgPQwgaNPRPcPJyQJSGlFKUaBVL0mgWR0Cr6RO/UONHdX2UKGgGaAloD0MImx2pvjNWckCUhpRSlGgVS6loFkdAq+kyUC7sfXV9lChoBmgJaA9DCFslWBxOBnJAlIaUUpRoFUvJaBZHQKvpNeVLSNR1fZQoaAZoCWgPQwhiEcMO49FkQJSGlFKUaBVN6ANoFkdAq+kqZlWfb3V9lChoBmgJaA9DCFTle0ZiZHFAlIaUUpRoFUu1aBZHQKvpZlCCz1N1fZQoaAZoCWgPQwj76qpA7cBzQJSGlFKUaBVL1GgWR0Cr6YC0F8ohdX2UKGgGaAloD0MI3sg88geIcUCUhpRSlGgVS6VoFkdAq+m/ttygf3V9lChoBmgJaA9DCJ7TLNDuunNAlIaUUpRoFUvraBZHQKvqLynUDuB1fZQoaAZoCWgPQwhtqBjn71RxQJSGlFKUaBVLu2gWR0Cr6mtlRP43dX2UKGgGaAloD0MIvw8HCZH0ckCUhpRSlGgVS8JoFkdAq+qB71Iy03V9lChoBmgJaA9DCORO6WD9OnBAlIaUUpRoFUvKaBZHQKvqf4QBgeB1fZQoaAZoCWgPQwiuLTwvFUVyQJSGlFKUaBVL2GgWR0Cr6o0i6g/UdX2UKGgGaAloD0MIkX9mEN/4cUCUhpRSlGgVS8BoFkdAq+qeR/3Fk3V9lChoBmgJaA9DCPzh578Hxm9AlIaUUpRoFUvJaBZHQKvq7d+G47R1fZQoaAZoCWgPQwhDq5MzlL9yQJSGlFKUaBVLumgWR0Cr6wdCeEqUdX2UKGgGaAloD0MIUHCxogYKckCUhpRSlGgVS9JoFkdAq+sZqoIfKnV9lChoBmgJaA9DCJAy4gKQG3FAlIaUUpRoFUuxaBZHQKvrLyd4FA51fZQoaAZoCWgPQwguNxjqsJJyQJSGlFKUaBVLzGgWR0Cr6z6Hbh3rdX2UKGgGaAloD0MIt2J/2b2ccECUhpRSlGgVS9NoFkdAq+tVRk3CK3V9lChoBmgJaA9DCITx07j33HNAlIaUUpRoFUvxaBZHQKvrgYDTz/Z1fZQoaAZoCWgPQwhGXAAapYVyQJSGlFKUaBVL1mgWR0Cr66oB7u2JdX2UKGgGaAloD0MIhUAucaRAcECUhpRSlGgVS9poFkdAq+v7GT9sJ3V9lChoBmgJaA9DCMztXu7TCXJAlIaUUpRoFUutaBZHQKvsK6TW5H51fZQoaAZoCWgPQwi4IFuW7xtyQJSGlFKUaBVL0GgWR0Cr7EpjUd7wdX2UKGgGaAloD0MIiGh0BzHxcECUhpRSlGgVS7ZoFkdAq+xRkVeruXV9lChoBmgJaA9DCJCg+DGmmnJAlIaUUpRoFUvFaBZHQKvshtJFspJ1fZQoaAZoCWgPQwiFmEuq9mNyQJSGlFKUaBVL2WgWR0Cr7LDDCP6sdX2UKGgGaAloD0MI5uYb0X0VckCUhpRSlGgVS8poFkdAq+yl6Vt4zXV9lChoBmgJaA9DCL0eTIqPc01AlIaUUpRoFUuWaBZHQKvsvKsdT5x1fZQoaAZoCWgPQwhR2bCm8vdxQJSGlFKUaBVLumgWR0Cr7McEmpl0dX2UKGgGaAloD0MIJ6H0hZA8ckCUhpRSlGgVS85oFkdAq+0jB9Cu2nV9lChoBmgJaA9DCDvD1Ja6hXJAlIaUUpRoFUvkaBZHQKvtUSBbwBp1fZQoaAZoCWgPQwiLw5lfDTZxQJSGlFKUaBVL2mgWR0Cr7V/Z/Tb4dX2UKGgGaAloD0MIck7sof1lckCUhpRSlGgVS9VoFkdAq+149HMEBHV9lChoBmgJaA9DCPj578FrTXBAlIaUUpRoFUvMaBZHQKvtj0eU6gd1fZQoaAZoCWgPQwj20D5WsBNzQJSGlFKUaBVL12gWR0Cr7dkK3NLUdX2UKGgGaAloD0MIUyCzs6glcECUhpRSlGgVS8ZoFkdAq+4FBUrCnHV9lChoBmgJaA9DCIkjD0TWd3JAlIaUUpRoFUvRaBZHQKvuW2uPmxN1fZQoaAZoCWgPQwhSSDKrdxlyQJSGlFKUaBVLx2gWR0Cr7m3p4bCKdX2UKGgGaAloD0MI2JsYkpOacECUhpRSlGgVS69oFkdAq+6eDvmYB3V9lChoBmgJaA9DCBrBxvUv+XBAlIaUUpRoFUu3aBZHQKvuqeOGTLZ1fZQoaAZoCWgPQwhkJHuEGtFwQJSGlFKUaBVLt2gWR0Cr7p/VAiV0dX2UKGgGaAloD0MI9bnaij26cECUhpRSlGgVS8poFkdAq+615GBnSXV9lChoBmgJaA9DCAxcHmuGg3JAlIaUUpRoFUvmaBZHQKvuxkaMrEt1fZQoaAZoCWgPQwhHk4sxMDByQJSGlFKUaBVLvWgWR0Cr7troOhCddX2UKGgGaAloD0MIa7ddaG74cUCUhpRSlGgVS7VoFkdAq+8ka4tpVXV9lChoBmgJaA9DCCdok8Nno3FAlIaUUpRoFUu9aBZHQKvvi7/XGwR1fZQoaAZoCWgPQwgEHhhAeHxvQJSGlFKUaBVLtGgWR0Cr74yHVPN3dX2UKGgGaAloD0MIhSf0+pPEckCUhpRSlGgVS9JoFkdAq++r2JzkqHV9lChoBmgJaA9DCGHgufewOnNAlIaUUpRoFUvVaBZHQKvvpaq0dBB1fZQoaAZoCWgPQwi6ZYf4R2lyQJSGlFKUaBVL0GgWR0Cr8B34Kx9odX2UKGgGaAloD0MIrmUyHE93cUCUhpRSlGgVS7RoFkdAq/BNMTN+s3V9lChoBmgJaA9DCCdp/phW+XBAlIaUUpRoFUvTaBZHQKvwT1GLDQ91fZQoaAZoCWgPQwjNPLmmAM5yQJSGlFKUaBVLsmgWR0Cr8JPTodMkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f176965eb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f176965eb90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f176965ec20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f176965ecb0>", "_build": "<function ActorCriticPolicy._build at 0x7f176965ed40>", "forward": "<function ActorCriticPolicy.forward at 0x7f176965edd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f176965ee60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f176965eef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f176965ef80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1769662050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17696620e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f17696af600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653215940.989376, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAALSELPowjgT/IlRQ+3iBpvx7zmT4I2OG8AAAAAAAAAAAaZz49bNS6P1t98T7awAg+3/KdPOMVWz4AAAAAAAAAAA2q/T2NnZQ+fgm5vrTz9b4sSIU8S2p6vgAAAAAAAAAAs8uxPdyrSbwSGog+x0BGPReg3jzzTNo7AACAPwAAgD8aMQY9LkeQPaNkPr6E0NO+0taGvGV77b0AAAAAAAAAADPxCL0bKoi80IIEPkDVLj04gFi9ON2jPAAAgD8AAIA/JkaFvcPZLrqDOYw38FbjMl6WiLqie6S2AACAPwAAgD/NTbi8100luy55UT7O/hE94DtRPD9esL0AAIA/AACAPxpaJz5ePdo+xuQ+vhZoOb+s0HQ+8FL5vQAAAAAAAAAAwMk0Pitj1z5DFPS9vlUfv7dJjT4wDVW+AAAAAAAAAABGPjC+FQepP5Aj/L5L7Qy/iRm0vqP1kr4AAAAAAAAAALPsMD6WG7I/quH5Plyj7r7rxbs+VDCBPgAAAAAAAAAAzczJOIO1VryCrCE9ocIjPTXv6Tz6cky8AACAPwAAgD+z2GQ+JFKXP6jVHT+X8B+/ugjcPj5UqD4AAAAAAAAAAGZj1rxSsOG5V1VIvcnOLzNz3bA7Q75xswAAgD8AAIA/MzNCudfqfrukBxE+zOcXPTA3jLxifT28AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjBNf7ehPckCUhpRSlIwBbJRLlowBdJRHQL7FOznied11fZQoaAZoCWgPQwjB5hw8EwZNQJSGlFKUaBVLYGgWR0C+xTweJYT1dX2UKGgGaAloD0MIgm+aPjvWcECUhpRSlGgVS6NoFkdAvsVGJP69CnV9lChoBmgJaA9DCOpA1lPrsnFAlIaUUpRoFUufaBZHQL7FRWZ7Xxx1fZQoaAZoCWgPQwg+QWK7u2pwQJSGlFKUaBVLpWgWR0C+xUcf7rLRdX2UKGgGaAloD0MIKVlOQqn4ckCUhpRSlGgVS8JoFkdAvsWAGGEf1nV9lChoBmgJaA9DCH2x9+KLMXNAlIaUUpRoFUvJaBZHQL7FguFYdQx1fZQoaAZoCWgPQwhubkxPGPNwQJSGlFKUaBVLomgWR0C+ygMFUyYYdX2UKGgGaAloD0MId9mvO90UdECUhpRSlGgVS8toFkdAvsoR5C4SYnV9lChoBmgJaA9DCMRA174AcG9AlIaUUpRoFUu2aBZHQL7KEedTYNB1fZQoaAZoCWgPQwgcl3FTQ9ZyQJSGlFKUaBVLqmgWR0C+yhMZYPoWdX2UKGgGaAloD0MIoN0hxcDEcECUhpRSlGgVS5loFkdAvsoVnwob43V9lChoBmgJaA9DCIHR5c3hC3JAlIaUUpRoFUu/aBZHQL7KHLl3hXN1fZQoaAZoCWgPQwhTJcrekvdwQJSGlFKUaBVLqmgWR0C+yjEN4JNTdX2UKGgGaAloD0MI6wHzkOm2c0CUhpRSlGgVS6toFkdAvspB5+pfhXV9lChoBmgJaA9DCJ7Q609iZ3RAlIaUUpRoFUvGaBZHQL7KWtCRfWt1fZQoaAZoCWgPQwg7ONibGPNvQJSGlFKUaBVLpGgWR0C+ymCro4dZdX2UKGgGaAloD0MIKpFELyMZcECUhpRSlGgVS6xoFkdAvspy0fHPvHV9lChoBmgJaA9DCBv1EI3uX3BAlIaUUpRoFUutaBZHQL7KdPVd5Y51fZQoaAZoCWgPQwjvOhvyT6FyQJSGlFKUaBVLuGgWR0C+yoJJf6XTdX2UKGgGaAloD0MInzvB/mvac0CUhpRSlGgVS9BoFkdAvsqSOCGvfXV9lChoBmgJaA9DCD9XW7E/FnFAlIaUUpRoFUuraBZHQL7KsxUvPC51fZQoaAZoCWgPQwjds67Rcj5zQJSGlFKUaBVLrWgWR0C+yrMSbpeNdX2UKGgGaAloD0MI1IIXfcXEcECUhpRSlGgVS5JoFkdAvsq7aZhKDnV9lChoBmgJaA9DCOc6jbTUHXJAlIaUUpRoFUuzaBZHQL7KxoEB8x91fZQoaAZoCWgPQwgW9rTDX2xyQJSGlFKUaBVLjmgWR0C+ysylBQendX2UKGgGaAloD0MInrZGBONTc0CUhpRSlGgVS6poFkdAvsrMAIY3vXV9lChoBmgJaA9DCML2kzE+qXJAlIaUUpRoFUuuaBZHQL7Kz2c8Tzx1fZQoaAZoCWgPQwjgu80bJ/BzQJSGlFKUaBVLxmgWR0C+yubOE/SqdX2UKGgGaAloD0MIWFaalIKXc0CUhpRSlGgVS81oFkdAvsrycEvCdnV9lChoBmgJaA9DCBIR/kXQ9XBAlIaUUpRoFUuLaBZHQL7K+GorFwV1fZQoaAZoCWgPQwgLYwtBjr9wQJSGlFKUaBVLtWgWR0C+ywfWtlqbdX2UKGgGaAloD0MIj/rrFZavcUCUhpRSlGgVS6loFkdAvsswuVX3g3V9lChoBmgJaA9DCOlJmdSQlHNAlIaUUpRoFUuqaBZHQL7LNFlTWG11fZQoaAZoCWgPQwiJm1PJgIJzQJSGlFKUaBVLv2gWR0C+yzIODrZ8dX2UKGgGaAloD0MIETgSaLB3b0CUhpRSlGgVS6loFkdAvstCMju8b3V9lChoBmgJaA9DCPJ6MCk+BnJAlIaUUpRoFUuXaBZHQL7LaB0p3HJ1fZQoaAZoCWgPQwh3SgfrfwxwQJSGlFKUaBVLpmgWR0C+y3ECRwIddX2UKGgGaAloD0MI8gwa+idIckCUhpRSlGgVS8NoFkdAvstwwqRU3nV9lChoBmgJaA9DCOmAJOybSnJAlIaUUpRoFUu/aBZHQL7LjfuTibV1fZQoaAZoCWgPQwhwXwfO2fZyQJSGlFKUaBVLtWgWR0C+y52KAJ9idX2UKGgGaAloD0MIpyA/G7k+c0CUhpRSlGgVS7toFkdAvsueTJQtSXV9lChoBmgJaA9DCHxI+N7fCHRAlIaUUpRoFUu3aBZHQL7Ln4EwFkh1fZQoaAZoCWgPQwi+g584ADpxQJSGlFKUaBVLxGgWR0C+y69WZJCjdX2UKGgGaAloD0MI6PUn8blLckCUhpRSlGgVS6xoFkdAvsu5TisGPnV9lChoBmgJaA9DCDwXRnrRYnJAlIaUUpRoFUu5aBZHQL7LvAWSEDh1fZQoaAZoCWgPQwgx0/avbA9wQJSGlFKUaBVLrmgWR0C+y7+AAhjfdX2UKGgGaAloD0MI78aCwqBBc0CUhpRSlGgVS6toFkdAvsvK5wwTNHV9lChoBmgJaA9DCCi7mdGP6m9AlIaUUpRoFUudaBZHQL7L6VrAP/d1fZQoaAZoCWgPQwiYpghwOmhyQJSGlFKUaBVLumgWR0C+y/mSdOIqdX2UKGgGaAloD0MINUI/U+/4c0CUhpRSlGgVS8VoFkdAvswFbjcVQHV9lChoBmgJaA9DCNmwprKoinJAlIaUUpRoFUvKaBZHQL7MDXt0FKV1fZQoaAZoCWgPQwgydVd2gapyQJSGlFKUaBVLnGgWR0C+zBJ9uxbCdX2UKGgGaAloD0MIzc6id2qhc0CUhpRSlGgVS7hoFkdAvswvdCVrynV9lChoBmgJaA9DCLcm3ZZIdHFAlIaUUpRoFUvAaBZHQL7MMI065oZ1fZQoaAZoCWgPQwj0FaQZy/BxQJSGlFKUaBVLp2gWR0C+zEXqFAVxdX2UKGgGaAloD0MI0jqqmmBOcUCUhpRSlGgVS61oFkdAvsxNCqp97XV9lChoBmgJaA9DCDvI68EkYHNAlIaUUpRoFUvDaBZHQL7MU9i+cpd1fZQoaAZoCWgPQwhhi90+6z5yQJSGlFKUaBVLv2gWR0C+zF4sZpBYdX2UKGgGaAloD0MIyTuHMlRibkCUhpRSlGgVS6xoFkdAvsxmOXE61nV9lChoBmgJaA9DCKvtJvhmKXFAlIaUUpRoFUumaBZHQL7McjOs1bd1fZQoaAZoCWgPQwgs9MEydhxyQJSGlFKUaBVLuGgWR0C+zHSrDIikdX2UKGgGaAloD0MI0CueemQtc0CUhpRSlGgVS8loFkdAvsx4qTbFj3V9lChoBmgJaA9DCDmdZKsLH3JAlIaUUpRoFUvFaBZHQL7MhErGza91fZQoaAZoCWgPQwikUYGTLUVxQJSGlFKUaBVLpWgWR0C+zI+U+s5odX2UKGgGaAloD0MISZ9W0Z9KckCUhpRSlGgVS5toFkdAvsyusvIwNHV9lChoBmgJaA9DCHLBGfw9IHFAlIaUUpRoFUuzaBZHQL7MuqIJqqR1fZQoaAZoCWgPQwhfm42VWK1wQJSGlFKUaBVLumgWR0C+zLaLXL/0dX2UKGgGaAloD0MIP47myEq+cECUhpRSlGgVS8FoFkdAvszR01ZTynV9lChoBmgJaA9DCL8NMV4zq3FAlIaUUpRoFUuoaBZHQL7M2khzNll1fZQoaAZoCWgPQwgq4Qm9fhZwQJSGlFKUaBVLm2gWR0C+zOPd/J/5dX2UKGgGaAloD0MI5DCYv4L+c0CUhpRSlGgVS8doFkdAvsz98G9pRHV9lChoBmgJaA9DCGDnps34ZHJAlIaUUpRoFUuWaBZHQL7NELn9vTB1fZQoaAZoCWgPQwi8z/HR4kVyQJSGlFKUaBVLs2gWR0C+zRsF6iTMdX2UKGgGaAloD0MIe9l22tqNckCUhpRSlGgVS7hoFkdAvs0V6po9LnV9lChoBmgJaA9DCNgRh2zgWXFAlIaUUpRoFUuwaBZHQL7NIRFqi491fZQoaAZoCWgPQwjChTyCG7dzQJSGlFKUaBVLymgWR0C+zSIGpuMudX2UKGgGaAloD0MI0LNZ9fljckCUhpRSlGgVS65oFkdAvs0u9Ba9snV9lChoBmgJaA9DCCzvqgfMOHNAlIaUUpRoFUugaBZHQL7NNGe+VTt1fZQoaAZoCWgPQwiBlUOLbCxyQJSGlFKUaBVLvGgWR0C+zURhttQ9dX2UKGgGaAloD0MI2NZP/1mockCUhpRSlGgVS7toFkdAvs1eeQMhHXV9lChoBmgJaA9DCN3temnK9HJAlIaUUpRoFUuvaBZHQL7NcrAxi5N1fZQoaAZoCWgPQwjBjClYY3hvQJSGlFKUaBVLrGgWR0C+zXdI065odX2UKGgGaAloD0MIKzOl9bcGckCUhpRSlGgVS6ZoFkdAvs2NgCwKSnV9lChoBmgJaA9DCM2xvKve4HJAlIaUUpRoFUvJaBZHQL7NnDK5kLB1fZQoaAZoCWgPQwh9zAcEOpJxQJSGlFKUaBVLu2gWR0C+zbdr9EThdX2UKGgGaAloD0MI/pqsUQ/ocUCUhpRSlGgVS8VoFkdAvs25MWXTmXV9lChoBmgJaA9DCAiQoWPHbnJAlIaUUpRoFUuWaBZHQL7NxGOMl1N1fZQoaAZoCWgPQwiXOV0Wk3xyQJSGlFKUaBVLsWgWR0C+zcb9l2/0dX2UKGgGaAloD0MIvHmqQ+4ec0CUhpRSlGgVS69oFkdAvs3bFsHjZXV9lChoBmgJaA9DCA5MbhSZbXJAlIaUUpRoFUu6aBZHQL7N4zMzMzN1fZQoaAZoCWgPQwh6ppcYC0RxQJSGlFKUaBVLrmgWR0C+zeWEGqxUdX2UKGgGaAloD0MINUI/Uy8fcUCUhpRSlGgVS7VoFkdAvs37dRBNVXV9lChoBmgJaA9DCFD+7h31KXNAlIaUUpRoFUvPaBZHQL7ODNMXaal1fZQoaAZoCWgPQwgHfentD0tyQJSGlFKUaBVLxWgWR0C+zhQCfYjCdX2UKGgGaAloD0MIelbSiu+YckCUhpRSlGgVS8BoFkdAvs4ezru6VnV9lChoBmgJaA9DCBIwurx5pXFAlIaUUpRoFUuoaBZHQL7OOQcxTKl1fZQoaAZoCWgPQwhv1uB9VVJwQJSGlFKUaBVLrWgWR0C+zjqdhAnldX2UKGgGaAloD0MI7GtdakQyc0CUhpRSlGgVS75oFkdAvs46fywwCnV9lChoBmgJaA9DCMVVZd9VcXNAlIaUUpRoFUuzaBZHQL7OXmaYu011ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2448, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86a95e5bd4993928575de8991a64b12fa8bca6064186aa1e5cfbb1aa4405b859
|
3 |
+
size 144091
|
ppo-LunarLander-v2/data
CHANGED
@@ -47,7 +47,7 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,13 +69,13 @@
|
|
69 |
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1653215940.989376,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAALSELPowjgT/IlRQ+3iBpvx7zmT4I2OG8AAAAAAAAAAAaZz49bNS6P1t98T7awAg+3/KdPOMVWz4AAAAAAAAAAA2q/T2NnZQ+fgm5vrTz9b4sSIU8S2p6vgAAAAAAAAAAs8uxPdyrSbwSGog+x0BGPReg3jzzTNo7AACAPwAAgD8aMQY9LkeQPaNkPr6E0NO+0taGvGV77b0AAAAAAAAAADPxCL0bKoi80IIEPkDVLj04gFi9ON2jPAAAgD8AAIA/JkaFvcPZLrqDOYw38FbjMl6WiLqie6S2AACAPwAAgD/NTbi8100luy55UT7O/hE94DtRPD9esL0AAIA/AACAPxpaJz5ePdo+xuQ+vhZoOb+s0HQ+8FL5vQAAAAAAAAAAwMk0Pitj1z5DFPS9vlUfv7dJjT4wDVW+AAAAAAAAAABGPjC+FQepP5Aj/L5L7Qy/iRm0vqP1kr4AAAAAAAAAALPsMD6WG7I/quH5Plyj7r7rxbs+VDCBPgAAAAAAAAAAzczJOIO1VryCrCE9ocIjPTXv6Tz6cky8AACAPwAAgD+z2GQ+JFKXP6jVHT+X8B+/ugjcPj5UqD4AAAAAAAAAAGZj1rxSsOG5V1VIvcnOLzNz3bA7Q75xswAAgD8AAIA/MzNCudfqfrukBxE+zOcXPTA3jLxifT28AACAPwAAgD+UdJRiLg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjBNf7ehPckCUhpRSlIwBbJRLlowBdJRHQL7FOznied11fZQoaAZoCWgPQwjB5hw8EwZNQJSGlFKUaBVLYGgWR0C+xTweJYT1dX2UKGgGaAloD0MIgm+aPjvWcECUhpRSlGgVS6NoFkdAvsVGJP69CnV9lChoBmgJaA9DCOpA1lPrsnFAlIaUUpRoFUufaBZHQL7FRWZ7Xxx1fZQoaAZoCWgPQwg+QWK7u2pwQJSGlFKUaBVLpWgWR0C+xUcf7rLRdX2UKGgGaAloD0MIKVlOQqn4ckCUhpRSlGgVS8JoFkdAvsWAGGEf1nV9lChoBmgJaA9DCH2x9+KLMXNAlIaUUpRoFUvJaBZHQL7FguFYdQx1fZQoaAZoCWgPQwhubkxPGPNwQJSGlFKUaBVLomgWR0C+ygMFUyYYdX2UKGgGaAloD0MId9mvO90UdECUhpRSlGgVS8toFkdAvsoR5C4SYnV9lChoBmgJaA9DCMRA174AcG9AlIaUUpRoFUu2aBZHQL7KEedTYNB1fZQoaAZoCWgPQwgcl3FTQ9ZyQJSGlFKUaBVLqmgWR0C+yhMZYPoWdX2UKGgGaAloD0MIoN0hxcDEcECUhpRSlGgVS5loFkdAvsoVnwob43V9lChoBmgJaA9DCIHR5c3hC3JAlIaUUpRoFUu/aBZHQL7KHLl3hXN1fZQoaAZoCWgPQwhTJcrekvdwQJSGlFKUaBVLqmgWR0C+yjEN4JNTdX2UKGgGaAloD0MI6wHzkOm2c0CUhpRSlGgVS6toFkdAvspB5+pfhXV9lChoBmgJaA9DCJ7Q609iZ3RAlIaUUpRoFUvGaBZHQL7KWtCRfWt1fZQoaAZoCWgPQwg7ONibGPNvQJSGlFKUaBVLpGgWR0C+ymCro4dZdX2UKGgGaAloD0MIKpFELyMZcECUhpRSlGgVS6xoFkdAvspy0fHPvHV9lChoBmgJaA9DCBv1EI3uX3BAlIaUUpRoFUutaBZHQL7KdPVd5Y51fZQoaAZoCWgPQwjvOhvyT6FyQJSGlFKUaBVLuGgWR0C+yoJJf6XTdX2UKGgGaAloD0MInzvB/mvac0CUhpRSlGgVS9BoFkdAvsqSOCGvfXV9lChoBmgJaA9DCD9XW7E/FnFAlIaUUpRoFUuraBZHQL7KsxUvPC51fZQoaAZoCWgPQwjds67Rcj5zQJSGlFKUaBVLrWgWR0C+yrMSbpeNdX2UKGgGaAloD0MI1IIXfcXEcECUhpRSlGgVS5JoFkdAvsq7aZhKDnV9lChoBmgJaA9DCOc6jbTUHXJAlIaUUpRoFUuzaBZHQL7KxoEB8x91fZQoaAZoCWgPQwgW9rTDX2xyQJSGlFKUaBVLjmgWR0C+ysylBQendX2UKGgGaAloD0MInrZGBONTc0CUhpRSlGgVS6poFkdAvsrMAIY3vXV9lChoBmgJaA9DCML2kzE+qXJAlIaUUpRoFUuuaBZHQL7Kz2c8Tzx1fZQoaAZoCWgPQwjgu80bJ/BzQJSGlFKUaBVLxmgWR0C+yubOE/SqdX2UKGgGaAloD0MIWFaalIKXc0CUhpRSlGgVS81oFkdAvsrycEvCdnV9lChoBmgJaA9DCBIR/kXQ9XBAlIaUUpRoFUuLaBZHQL7K+GorFwV1fZQoaAZoCWgPQwgLYwtBjr9wQJSGlFKUaBVLtWgWR0C+ywfWtlqbdX2UKGgGaAloD0MIj/rrFZavcUCUhpRSlGgVS6loFkdAvsswuVX3g3V9lChoBmgJaA9DCOlJmdSQlHNAlIaUUpRoFUuqaBZHQL7LNFlTWG11fZQoaAZoCWgPQwiJm1PJgIJzQJSGlFKUaBVLv2gWR0C+yzIODrZ8dX2UKGgGaAloD0MIETgSaLB3b0CUhpRSlGgVS6loFkdAvstCMju8b3V9lChoBmgJaA9DCPJ6MCk+BnJAlIaUUpRoFUuXaBZHQL7LaB0p3HJ1fZQoaAZoCWgPQwh3SgfrfwxwQJSGlFKUaBVLpmgWR0C+y3ECRwIddX2UKGgGaAloD0MI8gwa+idIckCUhpRSlGgVS8NoFkdAvstwwqRU3nV9lChoBmgJaA9DCOmAJOybSnJAlIaUUpRoFUu/aBZHQL7LjfuTibV1fZQoaAZoCWgPQwhwXwfO2fZyQJSGlFKUaBVLtWgWR0C+y52KAJ9idX2UKGgGaAloD0MIpyA/G7k+c0CUhpRSlGgVS7toFkdAvsueTJQtSXV9lChoBmgJaA9DCHxI+N7fCHRAlIaUUpRoFUu3aBZHQL7Ln4EwFkh1fZQoaAZoCWgPQwi+g584ADpxQJSGlFKUaBVLxGgWR0C+y69WZJCjdX2UKGgGaAloD0MI6PUn8blLckCUhpRSlGgVS6xoFkdAvsu5TisGPnV9lChoBmgJaA9DCDwXRnrRYnJAlIaUUpRoFUu5aBZHQL7LvAWSEDh1fZQoaAZoCWgPQwgx0/avbA9wQJSGlFKUaBVLrmgWR0C+y7+AAhjfdX2UKGgGaAloD0MI78aCwqBBc0CUhpRSlGgVS6toFkdAvsvK5wwTNHV9lChoBmgJaA9DCCi7mdGP6m9AlIaUUpRoFUudaBZHQL7L6VrAP/d1fZQoaAZoCWgPQwiYpghwOmhyQJSGlFKUaBVLumgWR0C+y/mSdOIqdX2UKGgGaAloD0MINUI/U+/4c0CUhpRSlGgVS8VoFkdAvswFbjcVQHV9lChoBmgJaA9DCNmwprKoinJAlIaUUpRoFUvKaBZHQL7MDXt0FKV1fZQoaAZoCWgPQwgydVd2gapyQJSGlFKUaBVLnGgWR0C+zBJ9uxbCdX2UKGgGaAloD0MIzc6id2qhc0CUhpRSlGgVS7hoFkdAvswvdCVrynV9lChoBmgJaA9DCLcm3ZZIdHFAlIaUUpRoFUvAaBZHQL7MMI065oZ1fZQoaAZoCWgPQwj0FaQZy/BxQJSGlFKUaBVLp2gWR0C+zEXqFAVxdX2UKGgGaAloD0MI0jqqmmBOcUCUhpRSlGgVS61oFkdAvsxNCqp97XV9lChoBmgJaA9DCDvI68EkYHNAlIaUUpRoFUvDaBZHQL7MU9i+cpd1fZQoaAZoCWgPQwhhi90+6z5yQJSGlFKUaBVLv2gWR0C+zF4sZpBYdX2UKGgGaAloD0MIyTuHMlRibkCUhpRSlGgVS6xoFkdAvsxmOXE61nV9lChoBmgJaA9DCKvtJvhmKXFAlIaUUpRoFUumaBZHQL7McjOs1bd1fZQoaAZoCWgPQwgs9MEydhxyQJSGlFKUaBVLuGgWR0C+zHSrDIikdX2UKGgGaAloD0MI0CueemQtc0CUhpRSlGgVS8loFkdAvsx4qTbFj3V9lChoBmgJaA9DCDmdZKsLH3JAlIaUUpRoFUvFaBZHQL7MhErGza91fZQoaAZoCWgPQwikUYGTLUVxQJSGlFKUaBVLpWgWR0C+zI+U+s5odX2UKGgGaAloD0MISZ9W0Z9KckCUhpRSlGgVS5toFkdAvsyusvIwNHV9lChoBmgJaA9DCHLBGfw9IHFAlIaUUpRoFUuzaBZHQL7MuqIJqqR1fZQoaAZoCWgPQwhfm42VWK1wQJSGlFKUaBVLumgWR0C+zLaLXL/0dX2UKGgGaAloD0MIP47myEq+cECUhpRSlGgVS8FoFkdAvszR01ZTynV9lChoBmgJaA9DCL8NMV4zq3FAlIaUUpRoFUuoaBZHQL7M2khzNll1fZQoaAZoCWgPQwgq4Qm9fhZwQJSGlFKUaBVLm2gWR0C+zOPd/J/5dX2UKGgGaAloD0MI5DCYv4L+c0CUhpRSlGgVS8doFkdAvsz98G9pRHV9lChoBmgJaA9DCGDnps34ZHJAlIaUUpRoFUuWaBZHQL7NELn9vTB1fZQoaAZoCWgPQwi8z/HR4kVyQJSGlFKUaBVLs2gWR0C+zRsF6iTMdX2UKGgGaAloD0MIe9l22tqNckCUhpRSlGgVS7hoFkdAvs0V6po9LnV9lChoBmgJaA9DCNgRh2zgWXFAlIaUUpRoFUuwaBZHQL7NIRFqi491fZQoaAZoCWgPQwjChTyCG7dzQJSGlFKUaBVLymgWR0C+zSIGpuMudX2UKGgGaAloD0MI0LNZ9fljckCUhpRSlGgVS65oFkdAvs0u9Ba9snV9lChoBmgJaA9DCCzvqgfMOHNAlIaUUpRoFUugaBZHQL7NNGe+VTt1fZQoaAZoCWgPQwiBlUOLbCxyQJSGlFKUaBVLvGgWR0C+zURhttQ9dX2UKGgGaAloD0MI2NZP/1mockCUhpRSlGgVS7toFkdAvs1eeQMhHXV9lChoBmgJaA9DCN3temnK9HJAlIaUUpRoFUuvaBZHQL7NcrAxi5N1fZQoaAZoCWgPQwjBjClYY3hvQJSGlFKUaBVLrGgWR0C+zXdI065odX2UKGgGaAloD0MIKzOl9bcGckCUhpRSlGgVS6ZoFkdAvs2NgCwKSnV9lChoBmgJaA9DCM2xvKve4HJAlIaUUpRoFUvJaBZHQL7NnDK5kLB1fZQoaAZoCWgPQwh9zAcEOpJxQJSGlFKUaBVLu2gWR0C+zbdr9EThdX2UKGgGaAloD0MI/pqsUQ/ocUCUhpRSlGgVS8VoFkdAvs25MWXTmXV9lChoBmgJaA9DCAiQoWPHbnJAlIaUUpRoFUuWaBZHQL7NxGOMl1N1fZQoaAZoCWgPQwiXOV0Wk3xyQJSGlFKUaBVLsWgWR0C+zcb9l2/0dX2UKGgGaAloD0MIvHmqQ+4ec0CUhpRSlGgVS69oFkdAvs3bFsHjZXV9lChoBmgJaA9DCA5MbhSZbXJAlIaUUpRoFUu6aBZHQL7N4zMzMzN1fZQoaAZoCWgPQwh6ppcYC0RxQJSGlFKUaBVLrmgWR0C+zeWEGqxUdX2UKGgGaAloD0MINUI/Uy8fcUCUhpRSlGgVS7VoFkdAvs37dRBNVXV9lChoBmgJaA9DCFD+7h31KXNAlIaUUpRoFUvPaBZHQL7ODNMXaal1fZQoaAZoCWgPQwgHfentD0tyQJSGlFKUaBVLxWgWR0C+zhQCfYjCdX2UKGgGaAloD0MIelbSiu+YckCUhpRSlGgVS8BoFkdAvs4ezru6VnV9lChoBmgJaA9DCBIwurx5pXFAlIaUUpRoFUuoaBZHQL7OOQcxTKl1fZQoaAZoCWgPQwhv1uB9VVJwQJSGlFKUaBVLrWgWR0C+zjqdhAnldX2UKGgGaAloD0MI7GtdakQyc0CUhpRSlGgVS75oFkdAvs46fywwCnV9lChoBmgJaA9DCMVVZd9VcXNAlIaUUpRoFUuzaBZHQL7OXmaYu011ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 2448,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13b5b133de2509ebaa53e1eed33922a4b2a16a6ff0a53c4c34bd15f5419d072d
|
3 |
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:682880f5ae7fb5ca1a2e1944760c3e5116a641b36bdbd93ec0938dd936d44712
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcf534a68e3eb096618036b7da0fa35f5baab0d9ad5a8eea0e107fb5a412d07c
|
3 |
+
size 187748
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 289.34277925582336, "std_reward": 23.862419151351823, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-22T11:26:21.159657"}
|