End of training
Browse files
README.md
CHANGED
@@ -5,9 +5,24 @@ tags:
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- glue
|
|
|
|
|
8 |
model-index:
|
9 |
- name: t5-base_cola_dense
|
10 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -17,12 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
-
|
21 |
-
-
|
22 |
-
- eval_runtime: 1.6155
|
23 |
-
- eval_samples_per_second: 645.626
|
24 |
-
- eval_steps_per_second: 10.523
|
25 |
-
- step: 0
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -50,7 +61,80 @@ The following hyperparameters were used during training:
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
- lr_scheduler_warmup_steps: 200
|
53 |
-
- num_epochs:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
### Framework versions
|
56 |
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- glue
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
model-index:
|
11 |
- name: t5-base_cola_dense
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: glue
|
18 |
+
type: glue
|
19 |
+
config: cola
|
20 |
+
split: validation
|
21 |
+
args: cola
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8360498561840843
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5247
|
36 |
+
- Accuracy: 0.8360
|
|
|
|
|
|
|
|
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_steps: 200
|
64 |
+
- num_epochs: 5
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 0.6253 | 0.07 | 10 | 0.6218 | 0.6913 |
|
71 |
+
| 0.6283 | 0.15 | 20 | 0.6207 | 0.6913 |
|
72 |
+
| 0.6297 | 0.22 | 30 | 0.6193 | 0.6913 |
|
73 |
+
| 0.5936 | 0.3 | 40 | 0.6200 | 0.6913 |
|
74 |
+
| 0.609 | 0.37 | 50 | 0.6216 | 0.6913 |
|
75 |
+
| 0.5818 | 0.45 | 60 | 0.6182 | 0.6913 |
|
76 |
+
| 0.5984 | 0.52 | 70 | 0.6139 | 0.6913 |
|
77 |
+
| 0.5961 | 0.6 | 80 | 0.6089 | 0.6913 |
|
78 |
+
| 0.5594 | 0.67 | 90 | 0.6168 | 0.6913 |
|
79 |
+
| 0.597 | 0.75 | 100 | 0.6022 | 0.6913 |
|
80 |
+
| 0.6092 | 0.82 | 110 | 0.5537 | 0.6903 |
|
81 |
+
| 0.5454 | 0.9 | 120 | 0.5120 | 0.7296 |
|
82 |
+
| 0.5368 | 0.97 | 130 | 0.5120 | 0.7584 |
|
83 |
+
| 0.5185 | 1.04 | 140 | 0.4615 | 0.7987 |
|
84 |
+
| 0.4664 | 1.12 | 150 | 0.4893 | 0.7977 |
|
85 |
+
| 0.4938 | 1.19 | 160 | 0.4793 | 0.8044 |
|
86 |
+
| 0.3994 | 1.27 | 170 | 0.4912 | 0.8025 |
|
87 |
+
| 0.4989 | 1.34 | 180 | 0.5515 | 0.8092 |
|
88 |
+
| 0.4709 | 1.42 | 190 | 0.4909 | 0.8054 |
|
89 |
+
| 0.4099 | 1.49 | 200 | 0.5397 | 0.8121 |
|
90 |
+
| 0.4671 | 1.57 | 210 | 0.4736 | 0.8102 |
|
91 |
+
| 0.3893 | 1.64 | 220 | 0.4803 | 0.8178 |
|
92 |
+
| 0.4027 | 1.72 | 230 | 0.5195 | 0.8159 |
|
93 |
+
| 0.4208 | 1.79 | 240 | 0.4521 | 0.8188 |
|
94 |
+
| 0.4506 | 1.87 | 250 | 0.4943 | 0.8188 |
|
95 |
+
| 0.3647 | 1.94 | 260 | 0.4650 | 0.8255 |
|
96 |
+
| 0.4223 | 2.01 | 270 | 0.4865 | 0.8284 |
|
97 |
+
| 0.3584 | 2.09 | 280 | 0.4639 | 0.8284 |
|
98 |
+
| 0.3555 | 2.16 | 290 | 0.5321 | 0.8236 |
|
99 |
+
| 0.3433 | 2.24 | 300 | 0.5174 | 0.8303 |
|
100 |
+
| 0.3904 | 2.31 | 310 | 0.4811 | 0.8274 |
|
101 |
+
| 0.3418 | 2.39 | 320 | 0.5135 | 0.8265 |
|
102 |
+
| 0.3397 | 2.46 | 330 | 0.4854 | 0.8322 |
|
103 |
+
| 0.3336 | 2.54 | 340 | 0.5008 | 0.8332 |
|
104 |
+
| 0.3471 | 2.61 | 350 | 0.5065 | 0.8293 |
|
105 |
+
| 0.382 | 2.69 | 360 | 0.4708 | 0.8274 |
|
106 |
+
| 0.3533 | 2.76 | 370 | 0.4862 | 0.8265 |
|
107 |
+
| 0.3199 | 2.84 | 380 | 0.4904 | 0.8293 |
|
108 |
+
| 0.3757 | 2.91 | 390 | 0.4970 | 0.8332 |
|
109 |
+
| 0.3726 | 2.99 | 400 | 0.4965 | 0.8322 |
|
110 |
+
| 0.2957 | 3.06 | 410 | 0.4628 | 0.8303 |
|
111 |
+
| 0.3232 | 3.13 | 420 | 0.5174 | 0.8322 |
|
112 |
+
| 0.2836 | 3.21 | 430 | 0.5038 | 0.8351 |
|
113 |
+
| 0.2919 | 3.28 | 440 | 0.4987 | 0.8341 |
|
114 |
+
| 0.3578 | 3.36 | 450 | 0.5187 | 0.8313 |
|
115 |
+
| 0.398 | 3.43 | 460 | 0.5285 | 0.8380 |
|
116 |
+
| 0.3024 | 3.51 | 470 | 0.4971 | 0.8351 |
|
117 |
+
| 0.3153 | 3.58 | 480 | 0.5084 | 0.8351 |
|
118 |
+
| 0.307 | 3.66 | 490 | 0.5371 | 0.8332 |
|
119 |
+
| 0.2753 | 3.73 | 500 | 0.5247 | 0.8360 |
|
120 |
+
| 0.3515 | 3.81 | 510 | 0.4782 | 0.8360 |
|
121 |
+
| 0.2881 | 3.88 | 520 | 0.4784 | 0.8389 |
|
122 |
+
| 0.3203 | 3.96 | 530 | 0.5115 | 0.8351 |
|
123 |
+
| 0.2791 | 4.03 | 540 | 0.5294 | 0.8360 |
|
124 |
+
| 0.301 | 4.1 | 550 | 0.5218 | 0.8322 |
|
125 |
+
| 0.2652 | 4.18 | 560 | 0.4956 | 0.8360 |
|
126 |
+
| 0.2954 | 4.25 | 570 | 0.4878 | 0.8332 |
|
127 |
+
| 0.2345 | 4.33 | 580 | 0.5190 | 0.8313 |
|
128 |
+
| 0.3762 | 4.4 | 590 | 0.5315 | 0.8351 |
|
129 |
+
| 0.3614 | 4.48 | 600 | 0.5200 | 0.8341 |
|
130 |
+
| 0.3178 | 4.55 | 610 | 0.5237 | 0.8341 |
|
131 |
+
| 0.306 | 4.63 | 620 | 0.5232 | 0.8341 |
|
132 |
+
| 0.2828 | 4.7 | 630 | 0.5278 | 0.8360 |
|
133 |
+
| 0.3442 | 4.78 | 640 | 0.5270 | 0.8360 |
|
134 |
+
| 0.3268 | 4.85 | 650 | 0.5252 | 0.8351 |
|
135 |
+
| 0.2959 | 4.93 | 660 | 0.5284 | 0.8370 |
|
136 |
+
| 0.2861 | 5.0 | 670 | 0.5277 | 0.8351 |
|
137 |
+
|
138 |
|
139 |
### Framework versions
|
140 |
|