vvn0 commited on
Commit
57563c5
1 Parent(s): 2573642

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.70 +/- 0.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b6c37ee65312476805946ea801fbfdbbaa2004b47bfdd8792879e837aad5029
3
+ size 108095
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0b06da3b80>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f0b06d92d50>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675873830737542077,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAS4G/PjMTkTo9+hU/S4G/PjMTkTo9+hU/S4G/PjMTkTo9+hU/S4G/PjMTkTo9+hU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWrsqv/7PjL9Z41A/3S/YPyqonL9EyIe/IZxZvlZSwb/FjaQ/DGywPyKVeL9qWJa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABLgb8+MxOROj36FT8Nddc60rkqO3DQoLhLgb8+MxOROj36FT8Nddc60rkqO3DQoLhLgb8+MxOROj36FT8Nddc60rkqO3DQoLhLgb8+MxOROj36FT8Nddc60rkqO3DQoLiUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.3740333 0.00110683 0.5858496 ]\n [0.3740333 0.00110683 0.5858496 ]\n [0.3740333 0.00110683 0.5858496 ]\n [0.3740333 0.00110683 0.5858496 ]]",
60
+ "desired_goal": "[[-0.66692126 -1.1000974 0.81596905]\n [ 1.6889607 -1.223882 -1.0607991 ]\n [-0.21250965 -1.5103252 1.2855765 ]\n [ 1.3782973 -0.9710256 -1.1745732 ]]",
61
+ "observation": "[[ 3.7403330e-01 1.1068344e-03 5.8584958e-01 1.6438082e-03\n 2.6050699e-03 -7.6682190e-05]\n [ 3.7403330e-01 1.1068344e-03 5.8584958e-01 1.6438082e-03\n 2.6050699e-03 -7.6682190e-05]\n [ 3.7403330e-01 1.1068344e-03 5.8584958e-01 1.6438082e-03\n 2.6050699e-03 -7.6682190e-05]\n [ 3.7403330e-01 1.1068344e-03 5.8584958e-01 1.6438082e-03\n 2.6050699e-03 -7.6682190e-05]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAioesPa3eJD0/sWQ+3QkZvlPDF76xbHE7GrCUPaa6Dr6TCWU+GoBuvVXwxb0/WoA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.0842429 0.04025142 0.22333239]\n [-0.14945169 -0.14820604 0.00368385]\n [ 0.07260151 -0.13938388 0.22366934]\n [-0.05822764 -0.0966498 0.25068852]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDMhe7/7IE8CUhpRSlIwBbJRLMowBdJRHQKZpkO4G2Th1fZQoaAZoCWgPQwixFp8CYHz/v5SGlFKUaBVLMmgWR0CmaVRj8UEgdX2UKGgGaAloD0MI34rEBDX8CMCUhpRSlGgVSzJoFkdApmkTVtoBaXV9lChoBmgJaA9DCGAEjZlE/fm/lIaUUpRoFUsyaBZHQKZo1hiLEUF1fZQoaAZoCWgPQwicMcwJ2mQFwJSGlFKUaBVLMmgWR0CmaouN5t3wdX2UKGgGaAloD0MIrTO+Ly4V87+UhpRSlGgVSzJoFkdApmpPOB19v3V9lChoBmgJaA9DCEq2upwS0APAlIaUUpRoFUsyaBZHQKZqDos7MgV1fZQoaAZoCWgPQwgXu31Wmenzv5SGlFKUaBVLMmgWR0CmadENvwVkdX2UKGgGaAloD0MIIeUn1T6d/7+UhpRSlGgVSzJoFkdApmuCEal1sHV9lChoBmgJaA9DCNvC81KxMf6/lIaUUpRoFUsyaBZHQKZrRZ8KG+N1fZQoaAZoCWgPQwiZfol469wCwJSGlFKUaBVLMmgWR0CmawSX+l0pdX2UKGgGaAloD0MIRWRYxRu5CcCUhpRSlGgVSzJoFkdApmrHZM+NcXV9lChoBmgJaA9DCJNRZRh3Q/2/lIaUUpRoFUsyaBZHQKZsgnmaH9F1fZQoaAZoCWgPQwgxz0pa8Y0JwJSGlFKUaBVLMmgWR0CmbEY3eenRdX2UKGgGaAloD0MIXHSy1HrPEMCUhpRSlGgVSzJoFkdApmwFYSxqwnV9lChoBmgJaA9DCICfceFAyPa/lIaUUpRoFUsyaBZHQKZryA8Swnp1fZQoaAZoCWgPQwgK20/G+PATwJSGlFKUaBVLMmgWR0CmbYAD7qIKdX2UKGgGaAloD0MIS1tc4zNZCMCUhpRSlGgVSzJoFkdApm1DeO4oZ3V9lChoBmgJaA9DCGUaTS7G4A7AlIaUUpRoFUsyaBZHQKZtAolUp/h1fZQoaAZoCWgPQwgJ+gs9YjT1v5SGlFKUaBVLMmgWR0CmbMUEX+ERdX2UKGgGaAloD0MIwhN6/UkcA8CUhpRSlGgVSzJoFkdApm6Dd+G47XV9lChoBmgJaA9DCMzs8xjliRDAlIaUUpRoFUsyaBZHQKZuRtlZowp1fZQoaAZoCWgPQwinJVZGIx/tv5SGlFKUaBVLMmgWR0CmbgXeN1hcdX2UKGgGaAloD0MIt5ifG5qy9b+UhpRSlGgVSzJoFkdApm3IUBXCCXV9lChoBmgJaA9DCLbz/dR46QjAlIaUUpRoFUsyaBZHQKZvg/XXiBJ1fZQoaAZoCWgPQwj0T3Cxokb9v5SGlFKUaBVLMmgWR0Cmb0dIwudxdX2UKGgGaAloD0MIk1SmmIMAA8CUhpRSlGgVSzJoFkdApm8GVPepGXV9lChoBmgJaA9DCDeq04GsZ/6/lIaUUpRoFUsyaBZHQKZuyRdyDI11fZQoaAZoCWgPQwjFPZY+dIEJwJSGlFKUaBVLMmgWR0CmcHPqTr3TdX2UKGgGaAloD0MIRii2gqZVEMCUhpRSlGgVSzJoFkdApnA3UnXumnV9lChoBmgJaA9DCMnp6/ma5QzAlIaUUpRoFUsyaBZHQKZv9tMwlB11fZQoaAZoCWgPQwhxrIvbaKAIwJSGlFKUaBVLMmgWR0Cmb7of8uSPdX2UKGgGaAloD0MIGT230JWIBcCUhpRSlGgVSzJoFkdApnGGUliSaHV9lChoBmgJaA9DCFJ/vcKCe/S/lIaUUpRoFUsyaBZHQKZxSf/3nIR1fZQoaAZoCWgPQwgAx549l2kRwJSGlFKUaBVLMmgWR0CmcQkd/8VIdX2UKGgGaAloD0MI1cxaCkj7BMCUhpRSlGgVSzJoFkdApnDLu6VdHHV9lChoBmgJaA9DCBE0ZhL1QgXAlIaUUpRoFUsyaBZHQKZzGTEit7t1fZQoaAZoCWgPQwhw6ZjzjD3+v5SGlFKUaBVLMmgWR0Cmct1m8M/hdX2UKGgGaAloD0MIUFWhgVh28b+UhpRSlGgVSzJoFkdApnKc/yGzr3V9lChoBmgJaA9DCAiSdw5lyALAlIaUUpRoFUsyaBZHQKZyYEWZZ0V1fZQoaAZoCWgPQwjZzYx+NJz7v5SGlFKUaBVLMmgWR0CmdLg3DNyHdX2UKGgGaAloD0MISl6dY0B2AcCUhpRSlGgVSzJoFkdApnR8cyWRinV9lChoBmgJaA9DCIHQevgyUfS/lIaUUpRoFUsyaBZHQKZ0PJNj9XN1fZQoaAZoCWgPQwijA5Kwb6f1v5SGlFKUaBVLMmgWR0Cmc//PHDJmdX2UKGgGaAloD0MIgnFw6ZizA8CUhpRSlGgVSzJoFkdApnZsLfDUE3V9lChoBmgJaA9DCLtemiLA6f2/lIaUUpRoFUsyaBZHQKZ2MJ6Y3Nt1fZQoaAZoCWgPQwiWzLG8q74KwJSGlFKUaBVLMmgWR0CmdfAwXZXddX2UKGgGaAloD0MIObcJ98p8AsCUhpRSlGgVSzJoFkdApnWz3ueBhHV9lChoBmgJaA9DCOFCHsGN1Pm/lIaUUpRoFUsyaBZHQKZ4Gc3l0YF1fZQoaAZoCWgPQwjZsnxdhj/1v5SGlFKUaBVLMmgWR0Cmd94o7V8UdX2UKGgGaAloD0MIIeS8/49T+r+UhpRSlGgVSzJoFkdApneeOS4e93V9lChoBmgJaA9DCG3kuinl9QPAlIaUUpRoFUsyaBZHQKZ3YchC+lF1fZQoaAZoCWgPQwh9ryE4LiMHwJSGlFKUaBVLMmgWR0Cmeb29+PRzdX2UKGgGaAloD0MID18mipBqFMCUhpRSlGgVSzJoFkdApnmBvFWGRHV9lChoBmgJaA9DCCTW4lMALADAlIaUUpRoFUsyaBZHQKZ5QWVu76J1fZQoaAZoCWgPQwjONjemJyz/v5SGlFKUaBVLMmgWR0CmeQT9sJpndX2UKGgGaAloD0MIYLGGi9yjFcCUhpRSlGgVSzJoFkdApntba/RE4XV9lChoBmgJaA9DCKxVuyakhRLAlIaUUpRoFUsyaBZHQKZ7H3wkPc11fZQoaAZoCWgPQwgge737470EwJSGlFKUaBVLMmgWR0Cmet8VpKzzdX2UKGgGaAloD0MIU84Xey/uE8CUhpRSlGgVSzJoFkdApnqidvsJIHV9lChoBmgJaA9DCHRFKSFYlQvAlIaUUpRoFUsyaBZHQKZ8meBg/kh1fZQoaAZoCWgPQwiaQ1ILJVP8v5SGlFKUaBVLMmgWR0CmfF1QIldDdX2UKGgGaAloD0MIwavlzkzw/r+UhpRSlGgVSzJoFkdApnwciQkonnV9lChoBmgJaA9DCMLaGDvhxQPAlIaUUpRoFUsyaBZHQKZ734wAU+N1fZQoaAZoCWgPQwhjm1Q01p4LwJSGlFKUaBVLMmgWR0CmfZlabF0gdX2UKGgGaAloD0MIaafmcoMxFMCUhpRSlGgVSzJoFkdApn1c1EVnEnV9lChoBmgJaA9DCGAhc2VQbfO/lIaUUpRoFUsyaBZHQKZ9HBAOav11fZQoaAZoCWgPQwi7l/vkKAACwJSGlFKUaBVLMmgWR0CmfN7R4QjEdX2UKGgGaAloD0MIx9eeWRLAAcCUhpRSlGgVSzJoFkdApn6FByCFsnV9lChoBmgJaA9DCB1yM9yAz/6/lIaUUpRoFUsyaBZHQKZ+SJKJ2uB1fZQoaAZoCWgPQwjqBgq8k48HwJSGlFKUaBVLMmgWR0CmfgfKZDzAdX2UKGgGaAloD0MI9Q8iGXJs8L+UhpRSlGgVSzJoFkdApn3KQNkOJHV9lChoBmgJaA9DCAEXZMvyNQ/AlIaUUpRoFUsyaBZHQKZ/lLXcxj91fZQoaAZoCWgPQwjLSL2ncjoEwJSGlFKUaBVLMmgWR0Cmf1gbQ1JldX2UKGgGaAloD0MIFqbvNQSnCsCUhpRSlGgVSzJoFkdApn8YF1SwW3V9lChoBmgJaA9DCCO8PQgB2QnAlIaUUpRoFUsyaBZHQKZ+2pSaVlh1fZQoaAZoCWgPQwgvpS4Zx+gMwJSGlFKUaBVLMmgWR0CmgIwBYFJQdX2UKGgGaAloD0MIDf/pBgr8/7+UhpRSlGgVSzJoFkdApoBPnIQvpXV9lChoBmgJaA9DCMpQFVPphwTAlIaUUpRoFUsyaBZHQKaADpJwsGx1fZQoaAZoCWgPQwgYQPhQokUAwJSGlFKUaBVLMmgWR0Cmf9Fgc94edX2UKGgGaAloD0MIR3U6kPXUAMCUhpRSlGgVSzJoFkdApoF/5DZ13nV9lChoBmgJaA9DCNU8R+S7dADAlIaUUpRoFUsyaBZHQKaBQ384xUN1fZQoaAZoCWgPQwjS4SGMn0b+v5SGlFKUaBVLMmgWR0CmgQK46Oo6dX2UKGgGaAloD0MI8BMH0O/bAMCUhpRSlGgVSzJoFkdApoDFKsdT53V9lChoBmgJaA9DCI7KTdTSnArAlIaUUpRoFUsyaBZHQKaCdRceKbd1fZQoaAZoCWgPQwhW8xyR71L6v5SGlFKUaBVLMmgWR0CmgjiblRxcdX2UKGgGaAloD0MISguXVdhMAMCUhpRSlGgVSzJoFkdApoH33UQTVXV9lChoBmgJaA9DCHmUSnhCLwnAlIaUUpRoFUsyaBZHQKaBumOU+s51fZQoaAZoCWgPQwgwZHWr52T2v5SGlFKUaBVLMmgWR0Cmg2fVI7NjdX2UKGgGaAloD0MITpmbb0S3CcCUhpRSlGgVSzJoFkdApoMrYGt6onV9lChoBmgJaA9DCGpMiLmk6gDAlIaUUpRoFUsyaBZHQKaC6m9g4Ot1fZQoaAZoCWgPQwi8BKc+kHzwv5SGlFKUaBVLMmgWR0Cmgqz6zmfXdX2UKGgGaAloD0MIU3dlFwxeEMCUhpRSlGgVSzJoFkdApoRN3dKujnV9lChoBmgJaA9DCI4FhUGZZhDAlIaUUpRoFUsyaBZHQKaEESIP9UF1fZQoaAZoCWgPQwjJdyl1ybgMwJSGlFKUaBVLMmgWR0Cmg9AogFHKdX2UKGgGaAloD0MI6j2V055yC8CUhpRSlGgVSzJoFkdApoOSo60Y0nV9lChoBmgJaA9DCD7shQK2AwXAlIaUUpRoFUsyaBZHQKaFQzk6tDF1fZQoaAZoCWgPQwikpl1MM935v5SGlFKUaBVLMmgWR0CmhQbBO58SdX2UKGgGaAloD0MItvepKjTQDcCUhpRSlGgVSzJoFkdApoTF3W4EwHV9lChoBmgJaA9DCOrqjsU2qfq/lIaUUpRoFUsyaBZHQKaEiIeHSF51ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d980c87ca7b04d20024e37c813b58b6c0f9d0d3de5c79cd0139d5c3952ce315
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b74fc0712386c532837fc8d5b3f3a14381a3fcca29f7fb64869eebf63c2a2569
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0b06da3b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b06d92d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675873830737542077, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAS4G/PjMTkTo9+hU/S4G/PjMTkTo9+hU/S4G/PjMTkTo9+hU/S4G/PjMTkTo9+hU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWrsqv/7PjL9Z41A/3S/YPyqonL9EyIe/IZxZvlZSwb/FjaQ/DGywPyKVeL9qWJa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABLgb8+MxOROj36FT8Nddc60rkqO3DQoLhLgb8+MxOROj36FT8Nddc60rkqO3DQoLhLgb8+MxOROj36FT8Nddc60rkqO3DQoLhLgb8+MxOROj36FT8Nddc60rkqO3DQoLiUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3740333 0.00110683 0.5858496 ]\n [0.3740333 0.00110683 0.5858496 ]\n [0.3740333 0.00110683 0.5858496 ]\n [0.3740333 0.00110683 0.5858496 ]]", "desired_goal": "[[-0.66692126 -1.1000974 0.81596905]\n [ 1.6889607 -1.223882 -1.0607991 ]\n [-0.21250965 -1.5103252 1.2855765 ]\n [ 1.3782973 -0.9710256 -1.1745732 ]]", "observation": "[[ 3.7403330e-01 1.1068344e-03 5.8584958e-01 1.6438082e-03\n 2.6050699e-03 -7.6682190e-05]\n [ 3.7403330e-01 1.1068344e-03 5.8584958e-01 1.6438082e-03\n 2.6050699e-03 -7.6682190e-05]\n [ 3.7403330e-01 1.1068344e-03 5.8584958e-01 1.6438082e-03\n 2.6050699e-03 -7.6682190e-05]\n [ 3.7403330e-01 1.1068344e-03 5.8584958e-01 1.6438082e-03\n 2.6050699e-03 -7.6682190e-05]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAioesPa3eJD0/sWQ+3QkZvlPDF76xbHE7GrCUPaa6Dr6TCWU+GoBuvVXwxb0/WoA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0842429 0.04025142 0.22333239]\n [-0.14945169 -0.14820604 0.00368385]\n [ 0.07260151 -0.13938388 0.22366934]\n [-0.05822764 -0.0966498 0.25068852]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDMhe7/7IE8CUhpRSlIwBbJRLMowBdJRHQKZpkO4G2Th1fZQoaAZoCWgPQwixFp8CYHz/v5SGlFKUaBVLMmgWR0CmaVRj8UEgdX2UKGgGaAloD0MI34rEBDX8CMCUhpRSlGgVSzJoFkdApmkTVtoBaXV9lChoBmgJaA9DCGAEjZlE/fm/lIaUUpRoFUsyaBZHQKZo1hiLEUF1fZQoaAZoCWgPQwicMcwJ2mQFwJSGlFKUaBVLMmgWR0CmaouN5t3wdX2UKGgGaAloD0MIrTO+Ly4V87+UhpRSlGgVSzJoFkdApmpPOB19v3V9lChoBmgJaA9DCEq2upwS0APAlIaUUpRoFUsyaBZHQKZqDos7MgV1fZQoaAZoCWgPQwgXu31Wmenzv5SGlFKUaBVLMmgWR0CmadENvwVkdX2UKGgGaAloD0MIIeUn1T6d/7+UhpRSlGgVSzJoFkdApmuCEal1sHV9lChoBmgJaA9DCNvC81KxMf6/lIaUUpRoFUsyaBZHQKZrRZ8KG+N1fZQoaAZoCWgPQwiZfol469wCwJSGlFKUaBVLMmgWR0CmawSX+l0pdX2UKGgGaAloD0MIRWRYxRu5CcCUhpRSlGgVSzJoFkdApmrHZM+NcXV9lChoBmgJaA9DCJNRZRh3Q/2/lIaUUpRoFUsyaBZHQKZsgnmaH9F1fZQoaAZoCWgPQwgxz0pa8Y0JwJSGlFKUaBVLMmgWR0CmbEY3eenRdX2UKGgGaAloD0MIXHSy1HrPEMCUhpRSlGgVSzJoFkdApmwFYSxqwnV9lChoBmgJaA9DCICfceFAyPa/lIaUUpRoFUsyaBZHQKZryA8Swnp1fZQoaAZoCWgPQwgK20/G+PATwJSGlFKUaBVLMmgWR0CmbYAD7qIKdX2UKGgGaAloD0MIS1tc4zNZCMCUhpRSlGgVSzJoFkdApm1DeO4oZ3V9lChoBmgJaA9DCGUaTS7G4A7AlIaUUpRoFUsyaBZHQKZtAolUp/h1fZQoaAZoCWgPQwgJ+gs9YjT1v5SGlFKUaBVLMmgWR0CmbMUEX+ERdX2UKGgGaAloD0MIwhN6/UkcA8CUhpRSlGgVSzJoFkdApm6Dd+G47XV9lChoBmgJaA9DCMzs8xjliRDAlIaUUpRoFUsyaBZHQKZuRtlZowp1fZQoaAZoCWgPQwinJVZGIx/tv5SGlFKUaBVLMmgWR0CmbgXeN1hcdX2UKGgGaAloD0MIt5ifG5qy9b+UhpRSlGgVSzJoFkdApm3IUBXCCXV9lChoBmgJaA9DCLbz/dR46QjAlIaUUpRoFUsyaBZHQKZvg/XXiBJ1fZQoaAZoCWgPQwj0T3Cxokb9v5SGlFKUaBVLMmgWR0Cmb0dIwudxdX2UKGgGaAloD0MIk1SmmIMAA8CUhpRSlGgVSzJoFkdApm8GVPepGXV9lChoBmgJaA9DCDeq04GsZ/6/lIaUUpRoFUsyaBZHQKZuyRdyDI11fZQoaAZoCWgPQwjFPZY+dIEJwJSGlFKUaBVLMmgWR0CmcHPqTr3TdX2UKGgGaAloD0MIRii2gqZVEMCUhpRSlGgVSzJoFkdApnA3UnXumnV9lChoBmgJaA9DCMnp6/ma5QzAlIaUUpRoFUsyaBZHQKZv9tMwlB11fZQoaAZoCWgPQwhxrIvbaKAIwJSGlFKUaBVLMmgWR0Cmb7of8uSPdX2UKGgGaAloD0MIGT230JWIBcCUhpRSlGgVSzJoFkdApnGGUliSaHV9lChoBmgJaA9DCFJ/vcKCe/S/lIaUUpRoFUsyaBZHQKZxSf/3nIR1fZQoaAZoCWgPQwgAx549l2kRwJSGlFKUaBVLMmgWR0CmcQkd/8VIdX2UKGgGaAloD0MI1cxaCkj7BMCUhpRSlGgVSzJoFkdApnDLu6VdHHV9lChoBmgJaA9DCBE0ZhL1QgXAlIaUUpRoFUsyaBZHQKZzGTEit7t1fZQoaAZoCWgPQwhw6ZjzjD3+v5SGlFKUaBVLMmgWR0Cmct1m8M/hdX2UKGgGaAloD0MIUFWhgVh28b+UhpRSlGgVSzJoFkdApnKc/yGzr3V9lChoBmgJaA9DCAiSdw5lyALAlIaUUpRoFUsyaBZHQKZyYEWZZ0V1fZQoaAZoCWgPQwjZzYx+NJz7v5SGlFKUaBVLMmgWR0CmdLg3DNyHdX2UKGgGaAloD0MISl6dY0B2AcCUhpRSlGgVSzJoFkdApnR8cyWRinV9lChoBmgJaA9DCIHQevgyUfS/lIaUUpRoFUsyaBZHQKZ0PJNj9XN1fZQoaAZoCWgPQwijA5Kwb6f1v5SGlFKUaBVLMmgWR0Cmc//PHDJmdX2UKGgGaAloD0MIgnFw6ZizA8CUhpRSlGgVSzJoFkdApnZsLfDUE3V9lChoBmgJaA9DCLtemiLA6f2/lIaUUpRoFUsyaBZHQKZ2MJ6Y3Nt1fZQoaAZoCWgPQwiWzLG8q74KwJSGlFKUaBVLMmgWR0CmdfAwXZXddX2UKGgGaAloD0MIObcJ98p8AsCUhpRSlGgVSzJoFkdApnWz3ueBhHV9lChoBmgJaA9DCOFCHsGN1Pm/lIaUUpRoFUsyaBZHQKZ4Gc3l0YF1fZQoaAZoCWgPQwjZsnxdhj/1v5SGlFKUaBVLMmgWR0Cmd94o7V8UdX2UKGgGaAloD0MIIeS8/49T+r+UhpRSlGgVSzJoFkdApneeOS4e93V9lChoBmgJaA9DCG3kuinl9QPAlIaUUpRoFUsyaBZHQKZ3YchC+lF1fZQoaAZoCWgPQwh9ryE4LiMHwJSGlFKUaBVLMmgWR0Cmeb29+PRzdX2UKGgGaAloD0MID18mipBqFMCUhpRSlGgVSzJoFkdApnmBvFWGRHV9lChoBmgJaA9DCCTW4lMALADAlIaUUpRoFUsyaBZHQKZ5QWVu76J1fZQoaAZoCWgPQwjONjemJyz/v5SGlFKUaBVLMmgWR0CmeQT9sJpndX2UKGgGaAloD0MIYLGGi9yjFcCUhpRSlGgVSzJoFkdApntba/RE4XV9lChoBmgJaA9DCKxVuyakhRLAlIaUUpRoFUsyaBZHQKZ7H3wkPc11fZQoaAZoCWgPQwgge737470EwJSGlFKUaBVLMmgWR0Cmet8VpKzzdX2UKGgGaAloD0MIU84Xey/uE8CUhpRSlGgVSzJoFkdApnqidvsJIHV9lChoBmgJaA9DCHRFKSFYlQvAlIaUUpRoFUsyaBZHQKZ8meBg/kh1fZQoaAZoCWgPQwiaQ1ILJVP8v5SGlFKUaBVLMmgWR0CmfF1QIldDdX2UKGgGaAloD0MIwavlzkzw/r+UhpRSlGgVSzJoFkdApnwciQkonnV9lChoBmgJaA9DCMLaGDvhxQPAlIaUUpRoFUsyaBZHQKZ734wAU+N1fZQoaAZoCWgPQwhjm1Q01p4LwJSGlFKUaBVLMmgWR0CmfZlabF0gdX2UKGgGaAloD0MIaafmcoMxFMCUhpRSlGgVSzJoFkdApn1c1EVnEnV9lChoBmgJaA9DCGAhc2VQbfO/lIaUUpRoFUsyaBZHQKZ9HBAOav11fZQoaAZoCWgPQwi7l/vkKAACwJSGlFKUaBVLMmgWR0CmfN7R4QjEdX2UKGgGaAloD0MIx9eeWRLAAcCUhpRSlGgVSzJoFkdApn6FByCFsnV9lChoBmgJaA9DCB1yM9yAz/6/lIaUUpRoFUsyaBZHQKZ+SJKJ2uB1fZQoaAZoCWgPQwjqBgq8k48HwJSGlFKUaBVLMmgWR0CmfgfKZDzAdX2UKGgGaAloD0MI9Q8iGXJs8L+UhpRSlGgVSzJoFkdApn3KQNkOJHV9lChoBmgJaA9DCAEXZMvyNQ/AlIaUUpRoFUsyaBZHQKZ/lLXcxj91fZQoaAZoCWgPQwjLSL2ncjoEwJSGlFKUaBVLMmgWR0Cmf1gbQ1JldX2UKGgGaAloD0MIFqbvNQSnCsCUhpRSlGgVSzJoFkdApn8YF1SwW3V9lChoBmgJaA9DCCO8PQgB2QnAlIaUUpRoFUsyaBZHQKZ+2pSaVlh1fZQoaAZoCWgPQwgvpS4Zx+gMwJSGlFKUaBVLMmgWR0CmgIwBYFJQdX2UKGgGaAloD0MIDf/pBgr8/7+UhpRSlGgVSzJoFkdApoBPnIQvpXV9lChoBmgJaA9DCMpQFVPphwTAlIaUUpRoFUsyaBZHQKaADpJwsGx1fZQoaAZoCWgPQwgYQPhQokUAwJSGlFKUaBVLMmgWR0Cmf9Fgc94edX2UKGgGaAloD0MIR3U6kPXUAMCUhpRSlGgVSzJoFkdApoF/5DZ13nV9lChoBmgJaA9DCNU8R+S7dADAlIaUUpRoFUsyaBZHQKaBQ384xUN1fZQoaAZoCWgPQwjS4SGMn0b+v5SGlFKUaBVLMmgWR0CmgQK46Oo6dX2UKGgGaAloD0MI8BMH0O/bAMCUhpRSlGgVSzJoFkdApoDFKsdT53V9lChoBmgJaA9DCI7KTdTSnArAlIaUUpRoFUsyaBZHQKaCdRceKbd1fZQoaAZoCWgPQwhW8xyR71L6v5SGlFKUaBVLMmgWR0CmgjiblRxcdX2UKGgGaAloD0MISguXVdhMAMCUhpRSlGgVSzJoFkdApoH33UQTVXV9lChoBmgJaA9DCHmUSnhCLwnAlIaUUpRoFUsyaBZHQKaBumOU+s51fZQoaAZoCWgPQwgwZHWr52T2v5SGlFKUaBVLMmgWR0Cmg2fVI7NjdX2UKGgGaAloD0MITpmbb0S3CcCUhpRSlGgVSzJoFkdApoMrYGt6onV9lChoBmgJaA9DCGpMiLmk6gDAlIaUUpRoFUsyaBZHQKaC6m9g4Ot1fZQoaAZoCWgPQwi8BKc+kHzwv5SGlFKUaBVLMmgWR0Cmgqz6zmfXdX2UKGgGaAloD0MIU3dlFwxeEMCUhpRSlGgVSzJoFkdApoRN3dKujnV9lChoBmgJaA9DCI4FhUGZZhDAlIaUUpRoFUsyaBZHQKaEESIP9UF1fZQoaAZoCWgPQwjJdyl1ybgMwJSGlFKUaBVLMmgWR0Cmg9AogFHKdX2UKGgGaAloD0MI6j2V055yC8CUhpRSlGgVSzJoFkdApoOSo60Y0nV9lChoBmgJaA9DCD7shQK2AwXAlIaUUpRoFUsyaBZHQKaFQzk6tDF1fZQoaAZoCWgPQwikpl1MM935v5SGlFKUaBVLMmgWR0CmhQbBO58SdX2UKGgGaAloD0MItvepKjTQDcCUhpRSlGgVSzJoFkdApoTF3W4EwHV9lChoBmgJaA9DCOrqjsU2qfq/lIaUUpRoFUsyaBZHQKaEiIeHSF51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (696 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.6999479276128113, "std_reward": 0.6723532392806877, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T17:18:37.442626"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a149db6297a57740730ecf70bd56184090f6287cc0c2036a2589de076cca9e1
3
+ size 3056