Vova Manannikov
commited on
Commit
·
ca8fafa
1
Parent(s):
dbd6043
add pipeline
Browse files- pipeline.py +27 -0
- requirements.txt +3 -0
pipeline.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Union
|
2 |
+
import os
|
3 |
+
import joblib
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
features = ["fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "free_sulfur_dioxide", "total_sulfur_dioxide", "density", "pH", "sulphates", "alcohol"]
|
7 |
+
|
8 |
+
class PreTrainedPipeline():
|
9 |
+
def __init__(self, path=""):
|
10 |
+
self.model = joblib.load("sklearn_model.joblib")
|
11 |
+
|
12 |
+
def __call__(
|
13 |
+
self, inputs: Dict[str, Dict[str, List[Union[str, float]]]]
|
14 |
+
) -> List[Union[str, float]]:
|
15 |
+
"""
|
16 |
+
Args:
|
17 |
+
inputs (:obj:`dict`):
|
18 |
+
a dictionary containing a key 'data' mapping to a dict in which
|
19 |
+
the values represent each column.
|
20 |
+
Return:
|
21 |
+
A :obj:`list` of floats or strings: The classification output for each row.
|
22 |
+
"""
|
23 |
+
data = inputs["data"]
|
24 |
+
X = np.array([data[i] for i in features])
|
25 |
+
X = np.transpose(X, (1, 0))
|
26 |
+
return self.model.predict(X)
|
27 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
joblib==1.2.0
|
2 |
+
scikit-learn==0.24.2
|
3 |
+
numpy==1.24.3
|