Librarian Bot: Add base_model information to model
Browse filesThis pull request aims to enrich the metadata of your model by adding [`facebook/wav2vec2-large-xlsr-53`](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.
**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).
This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien).
If you want to automatically add `base_model` metadata to more of your modes you can use the [Librarian Bot](https://huggingface.co/librarian-bot) [Metadata Request Service](https://huggingface.co/spaces/librarian-bots/metadata_request_service)!
@@ -1,37 +1,38 @@
|
|
1 |
---
|
2 |
language: ja
|
3 |
-
|
4 |
-
- common_voice
|
5 |
-
metrics:
|
6 |
-
- wer
|
7 |
tags:
|
8 |
- audio
|
9 |
- automatic-speech-recognition
|
10 |
- speech
|
11 |
- xlsr-fine-tuning-week
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
model-index:
|
14 |
- name: XLSR Wav2Vec2 Japanese by Chien Vu
|
15 |
results:
|
16 |
- task:
|
17 |
-
name: Speech Recognition
|
18 |
type: automatic-speech-recognition
|
|
|
19 |
dataset:
|
20 |
name: Common Voice Japanese
|
21 |
type: common_voice
|
22 |
args: ja
|
23 |
metrics:
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
widget:
|
31 |
-
- example_title: Japanese speech corpus sample 1
|
32 |
-
src: https://u.pcloud.link/publink/show?code=XZwhAlXZFOtXiqKHMzmYS9wXrCP8Yb7EtRd7
|
33 |
-
- example_title: Japanese speech corpus sample 2
|
34 |
-
src: https://u.pcloud.link/publink/show?code=XZ6hAlXZ5ccULt0YtrhJFl7LygKg0SJzKX0k
|
35 |
---
|
36 |
# Wav2Vec2-Large-XLSR-53-Japanese
|
37 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice) and Japanese speech corpus of Saruwatari-lab, University of Tokyo [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut).
|
|
|
1 |
---
|
2 |
language: ja
|
3 |
+
license: apache-2.0
|
|
|
|
|
|
|
4 |
tags:
|
5 |
- audio
|
6 |
- automatic-speech-recognition
|
7 |
- speech
|
8 |
- xlsr-fine-tuning-week
|
9 |
+
datasets:
|
10 |
+
- common_voice
|
11 |
+
metrics:
|
12 |
+
- wer
|
13 |
+
widget:
|
14 |
+
- example_title: Japanese speech corpus sample 1
|
15 |
+
src: https://u.pcloud.link/publink/show?code=XZwhAlXZFOtXiqKHMzmYS9wXrCP8Yb7EtRd7
|
16 |
+
- example_title: Japanese speech corpus sample 2
|
17 |
+
src: https://u.pcloud.link/publink/show?code=XZ6hAlXZ5ccULt0YtrhJFl7LygKg0SJzKX0k
|
18 |
+
base_model: facebook/wav2vec2-large-xlsr-53
|
19 |
model-index:
|
20 |
- name: XLSR Wav2Vec2 Japanese by Chien Vu
|
21 |
results:
|
22 |
- task:
|
|
|
23 |
type: automatic-speech-recognition
|
24 |
+
name: Speech Recognition
|
25 |
dataset:
|
26 |
name: Common Voice Japanese
|
27 |
type: common_voice
|
28 |
args: ja
|
29 |
metrics:
|
30 |
+
- type: wer
|
31 |
+
value: 30.84
|
32 |
+
name: Test WER
|
33 |
+
- type: cer
|
34 |
+
value: 17.85
|
35 |
+
name: Test CER
|
|
|
|
|
|
|
|
|
|
|
36 |
---
|
37 |
# Wav2Vec2-Large-XLSR-53-Japanese
|
38 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice) and Japanese speech corpus of Saruwatari-lab, University of Tokyo [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut).
|