upload
Browse files- README.md +130 -0
- config.json +76 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ja
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
tags:
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- speech
|
11 |
+
- xlsr-fine-tuning-week
|
12 |
+
license: apache-2.0
|
13 |
+
model-index:
|
14 |
+
- name: XLSR Wav2Vec2 Japanese Hiragana by Chien Vu
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Common Voice Japanese
|
21 |
+
type: common_voice
|
22 |
+
args: ja
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 24.74
|
27 |
+
- name: Test CER
|
28 |
+
type: cer
|
29 |
+
value: 10.99
|
30 |
+
---
|
31 |
+
# Wav2Vec2-Large-XLSR-53-Japanese
|
32 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice) and Japanese speech corpus of Saruwatari-lab, University of Tokyo [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut).
|
33 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
34 |
+
## Usage
|
35 |
+
The model can be used directly (without a language model) as follows:
|
36 |
+
```python
|
37 |
+
!pip install mecab-python3
|
38 |
+
!pip install unidic-lite
|
39 |
+
!pip install pykakasi
|
40 |
+
!python -m unidic download
|
41 |
+
import torch
|
42 |
+
import torchaudio
|
43 |
+
import librosa
|
44 |
+
from datasets import load_dataset
|
45 |
+
import MeCab
|
46 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
47 |
+
import re
|
48 |
+
# config
|
49 |
+
wakati = MeCab.Tagger("-Owakati")
|
50 |
+
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\โฆ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใป]'
|
51 |
+
kakasi = pykakasi.kakasi()
|
52 |
+
kakasi.setMode("J","H")
|
53 |
+
kakasi.setMode("K","H")
|
54 |
+
kakasi.setMode("r","Hepburn")
|
55 |
+
conv = kakasi.getConverter()
|
56 |
+
# load data, processor and model
|
57 |
+
test_dataset = load_dataset("common_voice", "ja", split="test[:2%]")
|
58 |
+
processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแปragana")
|
59 |
+
model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแปragana")
|
60 |
+
resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000)
|
61 |
+
# Preprocessing the datasets.
|
62 |
+
def speech_file_to_array_fn(batch):
|
63 |
+
batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
|
64 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
|
65 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
66 |
+
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
|
67 |
+
return batch
|
68 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
69 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
70 |
+
with torch.no_grad():
|
71 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
72 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
73 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
74 |
+
print("Reference:", test_dataset["sentence"][:2])
|
75 |
+
```
|
76 |
+
## Evaluation
|
77 |
+
The model can be evaluated as follows on the Japanese test data of Common Voice.
|
78 |
+
```python
|
79 |
+
!pip install mecab-python3
|
80 |
+
!pip install unidic-lite
|
81 |
+
!pip install pykakasi
|
82 |
+
!python -m unidic download
|
83 |
+
import torch
|
84 |
+
import librosa
|
85 |
+
import torchaudio
|
86 |
+
from datasets import load_dataset, load_metric
|
87 |
+
import MeCab
|
88 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
89 |
+
import re
|
90 |
+
#config
|
91 |
+
wakati = MeCab.Tagger("-Owakati")
|
92 |
+
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\โฆ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใป]'
|
93 |
+
kakasi = pykakasi.kakasi()
|
94 |
+
kakasi.setMode("J","H")
|
95 |
+
kakasi.setMode("K","H")
|
96 |
+
kakasi.setMode("r","Hepburn")
|
97 |
+
conv = kakasi.getConverter()
|
98 |
+
# load data, processor and model
|
99 |
+
test_dataset = load_dataset("common_voice", "ja", split="test")
|
100 |
+
wer = load_metric("wer")
|
101 |
+
cer = load_metric("cer")
|
102 |
+
processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแปragana")
|
103 |
+
model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแปragana")
|
104 |
+
model.to("cuda")
|
105 |
+
resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000)
|
106 |
+
# Preprocessing the datasets.
|
107 |
+
def speech_file_to_array_fn(batch):
|
108 |
+
batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
|
109 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
|
110 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
111 |
+
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
|
112 |
+
return batch
|
113 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
114 |
+
# evaluate function
|
115 |
+
def evaluate(batch):
|
116 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
117 |
+
with torch.no_grad():
|
118 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
119 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
120 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
121 |
+
return batch
|
122 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
123 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
124 |
+
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
125 |
+
```
|
126 |
+
## Test Result
|
127 |
+
**WER:** 24.74%,
|
128 |
+
**CER:** 10.99%
|
129 |
+
## Training
|
130 |
+
The Common Voice `train`, `validation` datasets and Japanese speech corpus datasets were used for training.
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.15,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": false,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.2,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.15,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.15,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.1,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 85,
|
74 |
+
"transformers_version": "4.5.0.dev0",
|
75 |
+
"vocab_size": 86
|
76 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7018fae264b57c8db15f8a53d4f042270b10fdcc6014e6af8d87266614b310ed
|
3 |
+
size 1262286423
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7071f91984a92d8f1940fd926ca4fa345dc79c3acf3e19064f276ceea9f3b620
|
3 |
+
size 2415
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ใ": 0, "ใ": 1, "ใ": 2, "ใฃ": 3, "ใ": 4, "ใญ": 5, "ใซ": 6, "ใฐ": 7, "ใฒ": 8, "ใ": 9, "ใผ": 10, "ใก": 11, "ใต": 12, "ใช": 13, "ใ": 14, "ใ": 15, "ใฅ": 16, "ใ": 17, "ใบ": 18, "ใง": 19, "ใ": 20, "ใ": 21, "ใ": 22, "ใ": 23, "ใ": 24, "ใด": 25, "ใน": 26, "ใ": 27, "ใฏ": 28, "ใ
": 29, "ใ": 30, "ใฑ": 31, "ใ": 32, "ใ": 33, "ใข": 34, "ใฉ": 35, "ใ": 36, "ใฌ": 37, "ใพ": 38, "ใ": 39, "ใป": 40, "ใ": 41, "ใฟ": 42, "ใฆ": 43, "ใ": 44, "ใถ": 45, "ใ": 46, "ใ": 47, "ใ": 48, "ใ": 49, "ใ": 50, "ใ": 51, "ใ": 52, "ใ": 53, "ใ": 54, "ใ": 55, "ใจ": 56, "ใฝ": 57, "ใ": 58, "ใ": 59, "ใณ": 60, "ใ": 61, "ใ": 62, "ใธ": 63, "ใ": 64, "ใ ": 65, "ใค": 66, "ใ
": 67, "ใ": 68, "ใ": 69, "ใผ": 70, "ใ": 71, "ใ": 72, "ใ": 73, "ใ": 74, "ใ": 75, "ใ": 76, "ใฎ": 77, "ใ": 78, "ใท": 80, "ใ": 81, "ใ": 82, "ใ": 83, "|": 79, "[UNK]": 84, "[PAD]": 85}
|