geninhu commited on
Commit
b3b7b09
ยท
1 Parent(s): f7b8617
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ja
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: XLSR Wav2Vec2 Japanese Hiragana by Chien Vu
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice Japanese
21
+ type: common_voice
22
+ args: ja
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 24.74
27
+ - name: Test CER
28
+ type: cer
29
+ value: 10.99
30
+ ---
31
+ # Wav2Vec2-Large-XLSR-53-Japanese
32
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice) and Japanese speech corpus of Saruwatari-lab, University of Tokyo [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut).
33
+ When using this model, make sure that your speech input is sampled at 16kHz.
34
+ ## Usage
35
+ The model can be used directly (without a language model) as follows:
36
+ ```python
37
+ !pip install mecab-python3
38
+ !pip install unidic-lite
39
+ !pip install pykakasi
40
+ !python -m unidic download
41
+ import torch
42
+ import torchaudio
43
+ import librosa
44
+ from datasets import load_dataset
45
+ import MeCab
46
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
47
+ import re
48
+ # config
49
+ wakati = MeCab.Tagger("-Owakati")
50
+ chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€‚\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŽ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€Œ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\โ€ฆ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŸ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใƒป]'
51
+ kakasi = pykakasi.kakasi()
52
+ kakasi.setMode("J","H")
53
+ kakasi.setMode("K","H")
54
+ kakasi.setMode("r","Hepburn")
55
+ conv = kakasi.getConverter()
56
+ # load data, processor and model
57
+ test_dataset = load_dataset("common_voice", "ja", split="test[:2%]")
58
+ processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana")
59
+ model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana")
60
+ resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000)
61
+ # Preprocessing the datasets.
62
+ def speech_file_to_array_fn(batch):
63
+ batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
64
+ batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
65
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
66
+ batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
67
+ return batch
68
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
69
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
70
+ with torch.no_grad():
71
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
72
+ predicted_ids = torch.argmax(logits, dim=-1)
73
+ print("Prediction:", processor.batch_decode(predicted_ids))
74
+ print("Reference:", test_dataset["sentence"][:2])
75
+ ```
76
+ ## Evaluation
77
+ The model can be evaluated as follows on the Japanese test data of Common Voice.
78
+ ```python
79
+ !pip install mecab-python3
80
+ !pip install unidic-lite
81
+ !pip install pykakasi
82
+ !python -m unidic download
83
+ import torch
84
+ import librosa
85
+ import torchaudio
86
+ from datasets import load_dataset, load_metric
87
+ import MeCab
88
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
89
+ import re
90
+ #config
91
+ wakati = MeCab.Tagger("-Owakati")
92
+ chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€‚\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŽ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€Œ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\โ€ฆ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŸ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใƒป]'
93
+ kakasi = pykakasi.kakasi()
94
+ kakasi.setMode("J","H")
95
+ kakasi.setMode("K","H")
96
+ kakasi.setMode("r","Hepburn")
97
+ conv = kakasi.getConverter()
98
+ # load data, processor and model
99
+ test_dataset = load_dataset("common_voice", "ja", split="test")
100
+ wer = load_metric("wer")
101
+ cer = load_metric("cer")
102
+ processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana")
103
+ model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana")
104
+ model.to("cuda")
105
+ resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000)
106
+ # Preprocessing the datasets.
107
+ def speech_file_to_array_fn(batch):
108
+ batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
109
+ batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
110
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
111
+ batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
112
+ return batch
113
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
114
+ # evaluate function
115
+ def evaluate(batch):
116
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
117
+ with torch.no_grad():
118
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
119
+ pred_ids = torch.argmax(logits, dim=-1)
120
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
121
+ return batch
122
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
123
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
124
+ print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
125
+ ```
126
+ ## Test Result
127
+ **WER:** 24.74%,
128
+ **CER:** 10.99%
129
+ ## Training
130
+ The Common Voice `train`, `validation` datasets and Japanese speech corpus datasets were used for training.
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.0,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.15,
9
+ "bos_token_id": 1,
10
+ "conv_bias": true,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "mean",
39
+ "ctc_zero_infinity": false,
40
+ "do_stable_layer_norm": true,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_dropout": 0.0,
44
+ "feat_extract_norm": "layer",
45
+ "feat_proj_dropout": 0.2,
46
+ "final_dropout": 0.0,
47
+ "gradient_checkpointing": true,
48
+ "hidden_act": "gelu",
49
+ "hidden_dropout": 0.15,
50
+ "hidden_size": 1024,
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 4096,
53
+ "layer_norm_eps": 1e-05,
54
+ "layerdrop": 0.15,
55
+ "mask_channel_length": 10,
56
+ "mask_channel_min_space": 1,
57
+ "mask_channel_other": 0.0,
58
+ "mask_channel_prob": 0.0,
59
+ "mask_channel_selection": "static",
60
+ "mask_feature_length": 10,
61
+ "mask_feature_prob": 0.0,
62
+ "mask_time_length": 10,
63
+ "mask_time_min_space": 1,
64
+ "mask_time_other": 0.0,
65
+ "mask_time_prob": 0.1,
66
+ "mask_time_selection": "static",
67
+ "model_type": "wav2vec2",
68
+ "num_attention_heads": 16,
69
+ "num_conv_pos_embedding_groups": 16,
70
+ "num_conv_pos_embeddings": 128,
71
+ "num_feat_extract_layers": 7,
72
+ "num_hidden_layers": 24,
73
+ "pad_token_id": 85,
74
+ "transformers_version": "4.5.0.dev0",
75
+ "vocab_size": 86
76
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7018fae264b57c8db15f8a53d4f042270b10fdcc6014e6af8d87266614b310ed
3
+ size 1262286423
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7071f91984a92d8f1940fd926ca4fa345dc79c3acf3e19064f276ceea9f3b620
3
+ size 2415
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ใ‚‚": 0, "ใœ": 1, "ใ–": 2, "ใฃ": 3, "ใ‚ƒ": 4, "ใญ": 5, "ใซ": 6, "ใฐ": 7, "ใฒ": 8, "ใ—": 9, "ใผ": 10, "ใก": 11, "ใต": 12, "ใช": 13, "ใƒ": 14, "ใ‚Œ": 15, "ใฅ": 16, "ใ‰": 17, "ใบ": 18, "ใง": 19, "ใ‚’": 20, "ใ": 21, "ใŒ": 22, "ใ": 23, "ใ‚‹": 24, "ใด": 25, "ใน": 26, "ใ‚”": 27, "ใฏ": 28, "ใ‚…": 29, "ใ†": 30, "ใฑ": 31, "ใŠ": 32, "ใ": 33, "ใข": 34, "ใฉ": 35, "ใ‚": 36, "ใฌ": 37, "ใพ": 38, "ใ‚": 39, "ใป": 40, "ใš": 41, "ใฟ": 42, "ใฆ": 43, "ใ": 44, "ใถ": 45, "ใ’": 46, "ใ": 47, "ใ‚†": 48, "ใ“": 49, "ใˆ": 50, "ใ‚": 51, "ใ”": 52, "ใ‘": 53, "ใ•": 54, "ใž": 55, "ใจ": 56, "ใฝ": 57, "ใŸ": 58, "ใ‚–": 59, "ใณ": 60, "ใ™": 61, "ใ‚€": 62, "ใธ": 63, "ใ„": 64, "ใ ": 65, "ใค": 66, "ใ…": 67, "ใ‡": 68, "ใ˜": 69, "ใƒผ": 70, "ใŽ": 71, "ใ‹": 72, "ใ‚‰": 73, "ใ‚Š": 74, "ใ›": 75, "ใ‚‡": 76, "ใฎ": 77, "ใ‚„": 78, "ใท": 80, "ใ‚": 81, "ใ‚“": 82, "ใ‚ˆ": 83, "|": 79, "[UNK]": 84, "[PAD]": 85}