update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- superb
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: trillsson3-ft-keyword-spotting-14
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# trillsson3-ft-keyword-spotting-14
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [vumichien/nonsemantic-speech-trillsson3](https://huggingface.co/vumichien/nonsemantic-speech-trillsson3) on the superb dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3072
|
21 |
+
- Accuracy: 0.9089
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0003
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 64
|
43 |
+
- seed: 0
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 20.0
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
56 |
+
| 1.2824 | 1.0 | 1597 | 0.7818 | 0.6892 |
|
57 |
+
| 0.8003 | 2.0 | 3194 | 0.4443 | 0.8735 |
|
58 |
+
| 0.7232 | 3.0 | 4791 | 0.3728 | 0.8833 |
|
59 |
+
| 0.73 | 4.0 | 6388 | 0.3465 | 0.8973 |
|
60 |
+
| 0.7015 | 5.0 | 7985 | 0.3211 | 0.9109 |
|
61 |
+
| 0.6981 | 6.0 | 9582 | 0.3200 | 0.9081 |
|
62 |
+
| 0.6807 | 7.0 | 11179 | 0.3209 | 0.9059 |
|
63 |
+
| 0.6873 | 8.0 | 12776 | 0.3206 | 0.9022 |
|
64 |
+
| 0.6416 | 9.0 | 14373 | 0.3124 | 0.9057 |
|
65 |
+
| 0.6698 | 10.0 | 15970 | 0.3288 | 0.8950 |
|
66 |
+
| 0.716 | 11.0 | 17567 | 0.3147 | 0.8998 |
|
67 |
+
| 0.6514 | 12.0 | 19164 | 0.3034 | 0.9112 |
|
68 |
+
| 0.6513 | 13.0 | 20761 | 0.3091 | 0.9092 |
|
69 |
+
| 0.652 | 14.0 | 22358 | 0.3056 | 0.9100 |
|
70 |
+
| 0.7105 | 15.0 | 23955 | 0.3015 | 0.9150 |
|
71 |
+
| 0.6337 | 16.0 | 25552 | 0.3070 | 0.9091 |
|
72 |
+
| 0.63 | 17.0 | 27149 | 0.3018 | 0.9135 |
|
73 |
+
| 0.6672 | 18.0 | 28746 | 0.3084 | 0.9088 |
|
74 |
+
| 0.6479 | 19.0 | 30343 | 0.3060 | 0.9101 |
|
75 |
+
| 0.6658 | 20.0 | 31940 | 0.3072 | 0.9089 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.23.0.dev0
|
81 |
+
- Pytorch 1.12.1+cu113
|
82 |
+
- Datasets 2.6.1
|
83 |
+
- Tokenizers 0.13.1
|