vumichien commited on
Commit
9d434ec
1 Parent(s): 2e10568

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ datasets:
4
+ - stockmark/ner-wikipedia-dataset
5
+ language:
6
+ - ja
7
+ library_name: gliner
8
+ ---
9
+
10
+ # vumichien/ner-jp-gliner
11
+
12
+ This model is a fine-tuned version of [deberta-v3-base-japanese](ku-nlp/deberta-v3-base-japanese) on the Japanese Ner Wikipedia dataset.
13
+ It achieves the following results:
14
+ - Precision: 96.07%
15
+ - Recall: 89.16%
16
+ - F1 score: 92.49%
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
+ ## Training procedure
31
+
32
+ ### Training hyperparameters
33
+ The following hyperparameters were used during training:
34
+ - num_steps: 30000
35
+ - train_batch_size: 8
36
+ - eval_every: 3000
37
+ - warmup_ratio: 0.1
38
+ - scheduler_type: "cosine"
39
+ - loss_alpha: -1
40
+ - loss_gamma: 0
41
+ - label_smoothing: 0
42
+ - loss_reduction: "sum"
43
+ - lr_encoder: 1e-5
44
+ - lr_others: 5e-5
45
+ - weight_decay_encoder: 0.01
46
+ - weight_decay_other: 0.01
47
+
48
+ ### Training results
49
+
50
+ | Epoch | Training Loss |
51
+ |:-----:|:-------------:|
52
+ | 1 | 1291.582200 |
53
+ | 2 | 53.290100 |
54
+ | 3 | 44.137400 |
55
+ | 4 | 35.286200 |
56
+ | 5 | 20.865500 |
57
+ | 6 | 15.890000 |
58
+ | 7 | 13.369600 |
59
+ | 8 | 11.599500 |
60
+ | 9 | 9.773400 |
61
+ | 10 | 8.372600 |
62
+ | 11 | 7.256200 |
63
+ | 12 | 6.521800 |
64
+ | 13 | 7.203800 |
65
+ | 14 | 7.032900 |
66
+ | 15 | 6.189700 |
67
+ | 16 | 6.897400 |
68
+ | 17 | 6.031700 |
69
+ | 18 | 5.329600 |
70
+ | 19 | 5.411300 |
71
+ | 20 | 5.253800 |
72
+ | 21 | 4.522000 |
73
+ | 22 | 5.107700 |
74
+ | 23 | 4.163300 |
75
+ | 24 | 4.185400 |
76
+ | 25 | 3.403100 |
77
+ | 26 | 3.272400 |
78
+ | 27 | 2.387800 |
79
+ | 28 | 3.039400 |
80
+ | 29 | 2.383000 |
81
+ | 30 | 1.895300 |
82
+ | 31 | 1.748700 |
83
+ | 32 | 1.864300 |
84
+ | 33 | 2.343000 |
85
+ | 34 | 1.356600 |
86
+ | 35 | 1.182000 |
87
+ | 36 | 0.894700 |
88
+ | 37 | 0.954900 |