Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
datasets:
|
4 |
+
- stockmark/ner-wikipedia-dataset
|
5 |
+
language:
|
6 |
+
- ja
|
7 |
+
library_name: gliner
|
8 |
+
---
|
9 |
+
|
10 |
+
# vumichien/ner-jp-gliner
|
11 |
+
|
12 |
+
This model is a fine-tuned version of [deberta-v3-base-japanese](ku-nlp/deberta-v3-base-japanese) on the Japanese Ner Wikipedia dataset.
|
13 |
+
It achieves the following results:
|
14 |
+
- Precision: 96.07%
|
15 |
+
- Recall: 89.16%
|
16 |
+
- F1 score: 92.49%
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
The following hyperparameters were used during training:
|
34 |
+
- num_steps: 30000
|
35 |
+
- train_batch_size: 8
|
36 |
+
- eval_every: 3000
|
37 |
+
- warmup_ratio: 0.1
|
38 |
+
- scheduler_type: "cosine"
|
39 |
+
- loss_alpha: -1
|
40 |
+
- loss_gamma: 0
|
41 |
+
- label_smoothing: 0
|
42 |
+
- loss_reduction: "sum"
|
43 |
+
- lr_encoder: 1e-5
|
44 |
+
- lr_others: 5e-5
|
45 |
+
- weight_decay_encoder: 0.01
|
46 |
+
- weight_decay_other: 0.01
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Epoch | Training Loss |
|
51 |
+
|:-----:|:-------------:|
|
52 |
+
| 1 | 1291.582200 |
|
53 |
+
| 2 | 53.290100 |
|
54 |
+
| 3 | 44.137400 |
|
55 |
+
| 4 | 35.286200 |
|
56 |
+
| 5 | 20.865500 |
|
57 |
+
| 6 | 15.890000 |
|
58 |
+
| 7 | 13.369600 |
|
59 |
+
| 8 | 11.599500 |
|
60 |
+
| 9 | 9.773400 |
|
61 |
+
| 10 | 8.372600 |
|
62 |
+
| 11 | 7.256200 |
|
63 |
+
| 12 | 6.521800 |
|
64 |
+
| 13 | 7.203800 |
|
65 |
+
| 14 | 7.032900 |
|
66 |
+
| 15 | 6.189700 |
|
67 |
+
| 16 | 6.897400 |
|
68 |
+
| 17 | 6.031700 |
|
69 |
+
| 18 | 5.329600 |
|
70 |
+
| 19 | 5.411300 |
|
71 |
+
| 20 | 5.253800 |
|
72 |
+
| 21 | 4.522000 |
|
73 |
+
| 22 | 5.107700 |
|
74 |
+
| 23 | 4.163300 |
|
75 |
+
| 24 | 4.185400 |
|
76 |
+
| 25 | 3.403100 |
|
77 |
+
| 26 | 3.272400 |
|
78 |
+
| 27 | 2.387800 |
|
79 |
+
| 28 | 3.039400 |
|
80 |
+
| 29 | 2.383000 |
|
81 |
+
| 30 | 1.895300 |
|
82 |
+
| 31 | 1.748700 |
|
83 |
+
| 32 | 1.864300 |
|
84 |
+
| 33 | 2.343000 |
|
85 |
+
| 34 | 1.356600 |
|
86 |
+
| 35 | 1.182000 |
|
87 |
+
| 36 | 0.894700 |
|
88 |
+
| 37 | 0.954900 |
|