vukpetar commited on
Commit
a12f196
1 Parent(s): b9708d0

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 290.21 +/- 19.35
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb640987a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb64098830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb640988c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb64098950>", "_build": "<function ActorCriticPolicy._build at 0x7fbb640989e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbb64098a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb64098b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbb64098b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb64098c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb64098cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb64098d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbb640dade0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652034840.196917, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMDBOr7BzbK8oWxIupdo+rgSKBo+LX6uOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+YVXkjyXRkCUhpRSlIwBbJRLpIwBdJRHQMWyBVrIo3J1fZQoaAZoCWgPQwgHJjeKrNpuQJSGlFKUaBVLwWgWR0DFsiYJE6T4dX2UKGgGaAloD0MInInpQuzHckCUhpRSlGgVS9loFkdAxbJK5Fw1i3V9lChoBmgJaA9DCJnzjH3JTXJAlIaUUpRoFUvBaBZHQMWyavhybQV1fZQoaAZoCWgPQwiqKF5lrVFxQJSGlFKUaBVL6WgWR0DFspL5IpYtdX2UKGgGaAloD0MIlBRYABPVcUCUhpRSlGgVS/BoFkdAxbK7JYDDCXV9lChoBmgJaA9DCMPzUrExAnBAlIaUUpRoFUv+aBZHQMWy5wZflZJ1fZQoaAZoCWgPQwgk7UYfMyhyQJSGlFKUaBVLxGgWR0DFswiVjZtfdX2UKGgGaAloD0MI3IR7ZR7EcECUhpRSlGgVS6toFkdAxbMk4Ia99XV9lChoBmgJaA9DCCDPLt86F3FAlIaUUpRoFUvAaBZHQMWzWMIu5Bl1fZQoaAZoCWgPQwjIlXoWxGNyQJSGlFKUaBVLwmgWR0DFs3oOFxn4dX2UKGgGaAloD0MIlbpkHCOwckCUhpRSlGgVS+hoFkdAxbOg8J2MbXV9lChoBmgJaA9DCHO7l/tkcXRAlIaUUpRoFUvIaBZHQMWzweqBErp1fZQoaAZoCWgPQwj1L0lliqRzQJSGlFKUaBVL2GgWR0DFs+Y+6iCbdX2UKGgGaAloD0MI5uWw+w6ZckCUhpRSlGgVS9FoFkdAxbQIWP91l3V9lChoBmgJaA9DCJwzorR3z3BAlIaUUpRoFUvSaBZHQMW0K6tLcsV1fZQoaAZoCWgPQwgLRiV1glpwQJSGlFKUaBVLy2gWR0DFtFCoS+QEdX2UKGgGaAloD0MI+MH51HG2cUCUhpRSlGgVS/RoFkdAxbR7WLgn+nV9lChoBmgJaA9DCFga+FENLW9AlIaUUpRoFUvZaBZHQMW0nxfv4M51fZQoaAZoCWgPQwgdOdIZ2PlxQJSGlFKUaBVL22gWR0DFtNeFQEZBdX2UKGgGaAloD0MIN/qYDwjwckCUhpRSlGgVS/FoFkdAxbUBaX8fm3V9lChoBmgJaA9DCINPc/KiinJAlIaUUpRoFUuraBZHQMW1HTtCzC11fZQoaAZoCWgPQwgPYfw0bvNuQJSGlFKUaBVLuWgWR0DFtTvs3Q2NdX2UKGgGaAloD0MIr+qsFpgOcECUhpRSlGgVS8BoFkdAxbVb5jYqXnV9lChoBmgJaA9DCKdc4V0uaHJAlIaUUpRoFUv2aBZHQMW1hoVVPvd1fZQoaAZoCWgPQwhoQpPEksNyQJSGlFKUaBVL8WgWR0DFtbD50r9VdX2UKGgGaAloD0MIizTxDnCZcUCUhpRSlGgVS7ZoFkdAxbXOvmoze3V9lChoBmgJaA9DCPq4NlSM6FtAlIaUUpRoFU3oA2gWR0DFtuPfTCtSdX2UKGgGaAloD0MIfCqnPeXgcUCUhpRSlGgVS7toFkdAxbcDfCyhSXV9lChoBmgJaA9DCD/EBgtndHNAlIaUUpRoFUvXaBZHQMW3J6l+Eyt1fZQoaAZoCWgPQwg+lGjJY7dyQJSGlFKUaBVL0mgWR0DFt0qdUbT+dX2UKGgGaAloD0MIxCXHndJhc0CUhpRSlGgVS+BoFkdAxbdvVS4vvnV9lChoBmgJaA9DCISaIVXU83FAlIaUUpRoFUuraBZHQMW3i+gUUPB1fZQoaAZoCWgPQwinzqPi/210QJSGlFKUaBVLxGgWR0DFt6xCdBjXdX2UKGgGaAloD0MIuFm8WFidcUCUhpRSlGgVTSkBaBZHQMW33sguAZt1fZQoaAZoCWgPQwjbNoyCIHhzQJSGlFKUaBVNGAFoFkdAxbgk8r7O3XV9lChoBmgJaA9DCIbHfhZLpUlAlIaUUpRoFUulaBZHQMW4QHCGetl1fZQoaAZoCWgPQwitwJDV7clyQJSGlFKUaBVNEAFoFkdAxbhvtTDO1XV9lChoBmgJaA9DCAqFCDgES3FAlIaUUpRoFUvHaBZHQMW4kRd6cAl1fZQoaAZoCWgPQwi4BOCfkshzQJSGlFKUaBVLx2gWR0DFuLKagElmdX2UKGgGaAloD0MI+s+aH39kckCUhpRSlGgVS91oFkdAxbjXLKV6eHV9lChoBmgJaA9DCEM4ZtnTYHFAlIaUUpRoFUvQaBZHQMW4+f029+R1fZQoaAZoCWgPQwguAfinFBlwQJSGlFKUaBVLvGgWR0DFuRkGC7K8dX2UKGgGaAloD0MI/OJSlTa0cECUhpRSlGgVS7toFkdAxbk3wJgLJHV9lChoBmgJaA9DCOuOxTbpZnNAlIaUUpRoFUvOaBZHQMW5b2tEG7l1fZQoaAZoCWgPQwgfMXpuoadGQJSGlFKUaBVLm2gWR0DFuYmsFMZhdX2UKGgGaAloD0MIYd9OIoKfcUCUhpRSlGgVS71oFkdAxbmpGjKxLXV9lChoBmgJaA9DCNoeveE+snJAlIaUUpRoFUvBaBZHQMW5yS+xnnN1fZQoaAZoCWgPQwgva2KB75BxQJSGlFKUaBVLumgWR0DFueekgwGodX2UKGgGaAloD0MIMnctIR/DcUCUhpRSlGgVS7toFkdAxboHLZi/f3V9lChoBmgJaA9DCLpOIy1V0XBAlIaUUpRoFUv6aBZHQMW6McA7xNJ1fZQoaAZoCWgPQwitwmaASxxyQJSGlFKUaBVLvWgWR0DFulFzfaYedX2UKGgGaAloD0MISzygbAoqcUCUhpRSlGgVS8NoFkdAxbpy0gKWs3V9lChoBmgJaA9DCK2nVl+d23JAlIaUUpRoFUvkaBZHQMW6mahxo7F1fZQoaAZoCWgPQwjUu3g/rvRwQJSGlFKUaBVLr2gWR0DFurY8ZDRddX2UKGgGaAloD0MIXYlA9c+2cUCUhpRSlGgVS+FoFkdAxbr0jzI3i3V9lChoBmgJaA9DCFMlyt5SyG9AlIaUUpRoFUu/aBZHQMW7FU0Nz8x1fZQoaAZoCWgPQwhrtvKS/61wQJSGlFKUaBVL12gWR0DFuzrihnJ1dX2UKGgGaAloD0MI9tGpK5/5RkCUhpRSlGgVS5NoFkdAxbtTwWnCO3V9lChoBmgJaA9DCIeowp8hgXNAlIaUUpRoFUvHaBZHQMW7dwUpNK11fZQoaAZoCWgPQwg33h0Zq9ZwQJSGlFKUaBVL9WgWR0DFu6OkN4JNdX2UKGgGaAloD0MIs1w2OidecECUhpRSlGgVS8VoFkdAxbvEsOoYN3V9lChoBmgJaA9DCOYGQx1WlHJAlIaUUpRoFUvzaBZHQMW7718LKFJ1fZQoaAZoCWgPQwhoXg67b89zQJSGlFKUaBVL12gWR0DFvBNdxAB1dX2UKGgGaAloD0MIH4ZWJyfzcUCUhpRSlGgVS9doFkdAxbw5ElVtGnV9lChoBmgJaA9DCGYzh6TWrnFAlIaUUpRoFUvpaBZHQMW8ePkJa7p1fZQoaAZoCWgPQwgx6lp7n8xFQJSGlFKUaBVLpWgWR0DFvJSVQhwEdX2UKGgGaAloD0MIfpBlwUREcECUhpRSlGgVS9JoFkdAxby3qL0jDHV9lChoBmgJaA9DCPzfERVqynBAlIaUUpRoFUuxaBZHQMW81Td+G491fZQoaAZoCWgPQwgMI72oHcFyQJSGlFKUaBVL6mgWR0DFvPxxWDHwdX2UKGgGaAloD0MIqFSJsvfTc0CUhpRSlGgVS/NoFkdAxb0oONHYpXV9lChoBmgJaA9DCHuhgO1gQ3FAlIaUUpRoFUvUaBZHQMW9THVwxWV1fZQoaAZoCWgPQwitvU9VYZtzQJSGlFKUaBVLx2gWR0DFvW2PeYUndX2UKGgGaAloD0MIUKbR5KIDckCUhpRSlGgVS9JoFkdAxb2RzSThYXV9lChoBmgJaA9DCIAqbtxi5XFAlIaUUpRoFUuraBZHQMW9rbeuV5d1fZQoaAZoCWgPQwgCfo0kwVpyQJSGlFKUaBVL92gWR0DFvetgnc+JdX2UKGgGaAloD0MIcHfWbvvccUCUhpRSlGgVS91oFkdAxb4QwD/2kHV9lChoBmgJaA9DCAAapUt/gnJAlIaUUpRoFUvAaBZHQMW+MP0I1Lt1fZQoaAZoCWgPQwgSEmkbv1VwQJSGlFKUaBVLrGgWR0DFvk3/YJ3QdX2UKGgGaAloD0MI4CpPICwncUCUhpRSlGgVS6toFkdAxb5py7wrlXV9lChoBmgJaA9DCHvbTIU4H3BAlIaUUpRoFUvOaBZHQMW+i5QpF1B1fZQoaAZoCWgPQwg2VmKeVe5wQJSGlFKUaBVLymgWR0DFvq4JzDGcdX2UKGgGaAloD0MImL9C5kpsckCUhpRSlGgVTQsBaBZHQMW+3CI+GGp1fZQoaAZoCWgPQwhPCB10ielwQJSGlFKUaBVL1GgWR0DFvv64BmwrdX2UKGgGaAloD0MIQ6z+CMPEcUCUhpRSlGgVS+JoFkdAxb87J3gUDnV9lChoBmgJaA9DCN5y9WPTLnBAlIaUUpRoFUu6aBZHQMW/Wg2qDK51fZQoaAZoCWgPQwgIOe//Y8VwQJSGlFKUaBVLuWgWR0DFv3kY4yXVdX2UKGgGaAloD0MIc9nonF9dckCUhpRSlGgVS7doFkdAxb+XTvy9VXV9lChoBmgJaA9DCJF/ZhDfhHJAlIaUUpRoFUvQaBZHQMW/uffwZwZ1fZQoaAZoCWgPQwgzaykgLVBxQJSGlFKUaBVL22gWR0DFv92Pq9oOdX2UKGgGaAloD0MI1J0nnrO9QUCUhpRSlGgVS49oFkdAxb/0hePaMHV9lChoBmgJaA9DCLN5HAZzC29AlIaUUpRoFUvraBZHQMXAHGax5cF1fZQoaAZoCWgPQwgJGF3eXK5wQJSGlFKUaBVNtwJoFkdAxcC/HdXT3XV9lChoBmgJaA9DCPUtc7ps1HNAlIaUUpRoFUveaBZHQMXA5VhTfix1fZQoaAZoCWgPQwjds67RMvFyQJSGlFKUaBVL7mgWR0DFwQ2yHEdedX2UKGgGaAloD0MIAyfbwJ0Ub0CUhpRSlGgVS8RoFkdAxcEuAo5PuXV9lChoBmgJaA9DCB+6oL4l33JAlIaUUpRoFUvaaBZHQMXBUbKifxt1fZQoaAZoCWgPQwgFb0ijgs9yQJSGlFKUaBVL42gWR0DFwXfWH1vmdX2UKGgGaAloD0MIJ94BnrQlUkCUhpRSlGgVS5loFkdAxcGRaW5Yo3V9lChoBmgJaA9DCAH3PH8abXFAlIaUUpRoFUvUaBZHQMXBtR/ViF11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 11724, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d230fc25f94cb76fa4a4a2a67cbc72b3f30d3b0c75a956e30978b7002dd7c00f
3
+ size 143333
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb640987a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb64098830>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb640988c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb64098950>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbb640989e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbb64098a70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb64098b00>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbb64098b90>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb64098c20>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb64098cb0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb64098d40>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fbb640dade0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 2000896,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652034840.196917,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMDBOr7BzbK8oWxIupdo+rgSKBo+LX6uOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00044800000000000395,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+YVXkjyXRkCUhpRSlIwBbJRLpIwBdJRHQMWyBVrIo3J1fZQoaAZoCWgPQwgHJjeKrNpuQJSGlFKUaBVLwWgWR0DFsiYJE6T4dX2UKGgGaAloD0MInInpQuzHckCUhpRSlGgVS9loFkdAxbJK5Fw1i3V9lChoBmgJaA9DCJnzjH3JTXJAlIaUUpRoFUvBaBZHQMWyavhybQV1fZQoaAZoCWgPQwiqKF5lrVFxQJSGlFKUaBVL6WgWR0DFspL5IpYtdX2UKGgGaAloD0MIlBRYABPVcUCUhpRSlGgVS/BoFkdAxbK7JYDDCXV9lChoBmgJaA9DCMPzUrExAnBAlIaUUpRoFUv+aBZHQMWy5wZflZJ1fZQoaAZoCWgPQwgk7UYfMyhyQJSGlFKUaBVLxGgWR0DFswiVjZtfdX2UKGgGaAloD0MI3IR7ZR7EcECUhpRSlGgVS6toFkdAxbMk4Ia99XV9lChoBmgJaA9DCCDPLt86F3FAlIaUUpRoFUvAaBZHQMWzWMIu5Bl1fZQoaAZoCWgPQwjIlXoWxGNyQJSGlFKUaBVLwmgWR0DFs3oOFxn4dX2UKGgGaAloD0MIlbpkHCOwckCUhpRSlGgVS+hoFkdAxbOg8J2MbXV9lChoBmgJaA9DCHO7l/tkcXRAlIaUUpRoFUvIaBZHQMWzweqBErp1fZQoaAZoCWgPQwj1L0lliqRzQJSGlFKUaBVL2GgWR0DFs+Y+6iCbdX2UKGgGaAloD0MI5uWw+w6ZckCUhpRSlGgVS9FoFkdAxbQIWP91l3V9lChoBmgJaA9DCJwzorR3z3BAlIaUUpRoFUvSaBZHQMW0K6tLcsV1fZQoaAZoCWgPQwgLRiV1glpwQJSGlFKUaBVLy2gWR0DFtFCoS+QEdX2UKGgGaAloD0MI+MH51HG2cUCUhpRSlGgVS/RoFkdAxbR7WLgn+nV9lChoBmgJaA9DCFga+FENLW9AlIaUUpRoFUvZaBZHQMW0nxfv4M51fZQoaAZoCWgPQwgdOdIZ2PlxQJSGlFKUaBVL22gWR0DFtNeFQEZBdX2UKGgGaAloD0MIN/qYDwjwckCUhpRSlGgVS/FoFkdAxbUBaX8fm3V9lChoBmgJaA9DCINPc/KiinJAlIaUUpRoFUuraBZHQMW1HTtCzC11fZQoaAZoCWgPQwgPYfw0bvNuQJSGlFKUaBVLuWgWR0DFtTvs3Q2NdX2UKGgGaAloD0MIr+qsFpgOcECUhpRSlGgVS8BoFkdAxbVb5jYqXnV9lChoBmgJaA9DCKdc4V0uaHJAlIaUUpRoFUv2aBZHQMW1hoVVPvd1fZQoaAZoCWgPQwhoQpPEksNyQJSGlFKUaBVL8WgWR0DFtbD50r9VdX2UKGgGaAloD0MIizTxDnCZcUCUhpRSlGgVS7ZoFkdAxbXOvmoze3V9lChoBmgJaA9DCPq4NlSM6FtAlIaUUpRoFU3oA2gWR0DFtuPfTCtSdX2UKGgGaAloD0MIfCqnPeXgcUCUhpRSlGgVS7toFkdAxbcDfCyhSXV9lChoBmgJaA9DCD/EBgtndHNAlIaUUpRoFUvXaBZHQMW3J6l+Eyt1fZQoaAZoCWgPQwg+lGjJY7dyQJSGlFKUaBVL0mgWR0DFt0qdUbT+dX2UKGgGaAloD0MIxCXHndJhc0CUhpRSlGgVS+BoFkdAxbdvVS4vvnV9lChoBmgJaA9DCISaIVXU83FAlIaUUpRoFUuraBZHQMW3i+gUUPB1fZQoaAZoCWgPQwinzqPi/210QJSGlFKUaBVLxGgWR0DFt6xCdBjXdX2UKGgGaAloD0MIuFm8WFidcUCUhpRSlGgVTSkBaBZHQMW33sguAZt1fZQoaAZoCWgPQwjbNoyCIHhzQJSGlFKUaBVNGAFoFkdAxbgk8r7O3XV9lChoBmgJaA9DCIbHfhZLpUlAlIaUUpRoFUulaBZHQMW4QHCGetl1fZQoaAZoCWgPQwitwJDV7clyQJSGlFKUaBVNEAFoFkdAxbhvtTDO1XV9lChoBmgJaA9DCAqFCDgES3FAlIaUUpRoFUvHaBZHQMW4kRd6cAl1fZQoaAZoCWgPQwi4BOCfkshzQJSGlFKUaBVLx2gWR0DFuLKagElmdX2UKGgGaAloD0MI+s+aH39kckCUhpRSlGgVS91oFkdAxbjXLKV6eHV9lChoBmgJaA9DCEM4ZtnTYHFAlIaUUpRoFUvQaBZHQMW4+f029+R1fZQoaAZoCWgPQwguAfinFBlwQJSGlFKUaBVLvGgWR0DFuRkGC7K8dX2UKGgGaAloD0MI/OJSlTa0cECUhpRSlGgVS7toFkdAxbk3wJgLJHV9lChoBmgJaA9DCOuOxTbpZnNAlIaUUpRoFUvOaBZHQMW5b2tEG7l1fZQoaAZoCWgPQwgfMXpuoadGQJSGlFKUaBVLm2gWR0DFuYmsFMZhdX2UKGgGaAloD0MIYd9OIoKfcUCUhpRSlGgVS71oFkdAxbmpGjKxLXV9lChoBmgJaA9DCNoeveE+snJAlIaUUpRoFUvBaBZHQMW5yS+xnnN1fZQoaAZoCWgPQwgva2KB75BxQJSGlFKUaBVLumgWR0DFueekgwGodX2UKGgGaAloD0MIMnctIR/DcUCUhpRSlGgVS7toFkdAxboHLZi/f3V9lChoBmgJaA9DCLpOIy1V0XBAlIaUUpRoFUv6aBZHQMW6McA7xNJ1fZQoaAZoCWgPQwitwmaASxxyQJSGlFKUaBVLvWgWR0DFulFzfaYedX2UKGgGaAloD0MISzygbAoqcUCUhpRSlGgVS8NoFkdAxbpy0gKWs3V9lChoBmgJaA9DCK2nVl+d23JAlIaUUpRoFUvkaBZHQMW6mahxo7F1fZQoaAZoCWgPQwjUu3g/rvRwQJSGlFKUaBVLr2gWR0DFurY8ZDRddX2UKGgGaAloD0MIXYlA9c+2cUCUhpRSlGgVS+FoFkdAxbr0jzI3i3V9lChoBmgJaA9DCFMlyt5SyG9AlIaUUpRoFUu/aBZHQMW7FU0Nz8x1fZQoaAZoCWgPQwhrtvKS/61wQJSGlFKUaBVL12gWR0DFuzrihnJ1dX2UKGgGaAloD0MI9tGpK5/5RkCUhpRSlGgVS5NoFkdAxbtTwWnCO3V9lChoBmgJaA9DCIeowp8hgXNAlIaUUpRoFUvHaBZHQMW7dwUpNK11fZQoaAZoCWgPQwg33h0Zq9ZwQJSGlFKUaBVL9WgWR0DFu6OkN4JNdX2UKGgGaAloD0MIs1w2OidecECUhpRSlGgVS8VoFkdAxbvEsOoYN3V9lChoBmgJaA9DCOYGQx1WlHJAlIaUUpRoFUvzaBZHQMW7718LKFJ1fZQoaAZoCWgPQwhoXg67b89zQJSGlFKUaBVL12gWR0DFvBNdxAB1dX2UKGgGaAloD0MIH4ZWJyfzcUCUhpRSlGgVS9doFkdAxbw5ElVtGnV9lChoBmgJaA9DCGYzh6TWrnFAlIaUUpRoFUvpaBZHQMW8ePkJa7p1fZQoaAZoCWgPQwgx6lp7n8xFQJSGlFKUaBVLpWgWR0DFvJSVQhwEdX2UKGgGaAloD0MIfpBlwUREcECUhpRSlGgVS9JoFkdAxby3qL0jDHV9lChoBmgJaA9DCPzfERVqynBAlIaUUpRoFUuxaBZHQMW81Td+G491fZQoaAZoCWgPQwgMI72oHcFyQJSGlFKUaBVL6mgWR0DFvPxxWDHwdX2UKGgGaAloD0MIqFSJsvfTc0CUhpRSlGgVS/NoFkdAxb0oONHYpXV9lChoBmgJaA9DCHuhgO1gQ3FAlIaUUpRoFUvUaBZHQMW9THVwxWV1fZQoaAZoCWgPQwitvU9VYZtzQJSGlFKUaBVLx2gWR0DFvW2PeYUndX2UKGgGaAloD0MIUKbR5KIDckCUhpRSlGgVS9JoFkdAxb2RzSThYXV9lChoBmgJaA9DCIAqbtxi5XFAlIaUUpRoFUuraBZHQMW9rbeuV5d1fZQoaAZoCWgPQwgCfo0kwVpyQJSGlFKUaBVL92gWR0DFvetgnc+JdX2UKGgGaAloD0MIcHfWbvvccUCUhpRSlGgVS91oFkdAxb4QwD/2kHV9lChoBmgJaA9DCAAapUt/gnJAlIaUUpRoFUvAaBZHQMW+MP0I1Lt1fZQoaAZoCWgPQwgSEmkbv1VwQJSGlFKUaBVLrGgWR0DFvk3/YJ3QdX2UKGgGaAloD0MI4CpPICwncUCUhpRSlGgVS6toFkdAxb5py7wrlXV9lChoBmgJaA9DCHvbTIU4H3BAlIaUUpRoFUvOaBZHQMW+i5QpF1B1fZQoaAZoCWgPQwg2VmKeVe5wQJSGlFKUaBVLymgWR0DFvq4JzDGcdX2UKGgGaAloD0MImL9C5kpsckCUhpRSlGgVTQsBaBZHQMW+3CI+GGp1fZQoaAZoCWgPQwhPCB10ielwQJSGlFKUaBVL1GgWR0DFvv64BmwrdX2UKGgGaAloD0MIQ6z+CMPEcUCUhpRSlGgVS+JoFkdAxb87J3gUDnV9lChoBmgJaA9DCN5y9WPTLnBAlIaUUpRoFUu6aBZHQMW/Wg2qDK51fZQoaAZoCWgPQwgIOe//Y8VwQJSGlFKUaBVLuWgWR0DFv3kY4yXVdX2UKGgGaAloD0MIc9nonF9dckCUhpRSlGgVS7doFkdAxb+XTvy9VXV9lChoBmgJaA9DCJF/ZhDfhHJAlIaUUpRoFUvQaBZHQMW/uffwZwZ1fZQoaAZoCWgPQwgzaykgLVBxQJSGlFKUaBVL22gWR0DFv92Pq9oOdX2UKGgGaAloD0MI1J0nnrO9QUCUhpRSlGgVS49oFkdAxb/0hePaMHV9lChoBmgJaA9DCLN5HAZzC29AlIaUUpRoFUvraBZHQMXAHGax5cF1fZQoaAZoCWgPQwgJGF3eXK5wQJSGlFKUaBVNtwJoFkdAxcC/HdXT3XV9lChoBmgJaA9DCPUtc7ps1HNAlIaUUpRoFUveaBZHQMXA5VhTfix1fZQoaAZoCWgPQwjds67RMvFyQJSGlFKUaBVL7mgWR0DFwQ2yHEdedX2UKGgGaAloD0MIAyfbwJ0Ub0CUhpRSlGgVS8RoFkdAxcEuAo5PuXV9lChoBmgJaA9DCB+6oL4l33JAlIaUUpRoFUvaaBZHQMXBUbKifxt1fZQoaAZoCWgPQwgFb0ijgs9yQJSGlFKUaBVL42gWR0DFwXfWH1vmdX2UKGgGaAloD0MIJ94BnrQlUkCUhpRSlGgVS5loFkdAxcGRaW5Yo3V9lChoBmgJaA9DCAH3PH8abXFAlIaUUpRoFUvUaBZHQMXBtR/ViF11ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 11724,
79
+ "n_steps": 2048,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 256,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f8ea02ee0a62657520b01938155ebaa1159a16ca5e03c91b6404cdba2a94c32
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48c361d53103dcc12c1de81465f27057b4f80215cf32a1a646d820410cd359ed
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0605198fb6d5cebc6fd089e8c2718537a4ddf20d50087f82f14d46ec791e6af8
3
+ size 188315
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 290.20745920063354, "std_reward": 19.34544864190856, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T19:35:56.858692"}