Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 290.21 +/- 19.35
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb640987a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb64098830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb640988c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb64098950>", "_build": "<function ActorCriticPolicy._build at 0x7fbb640989e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbb64098a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb64098b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbb64098b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb64098c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb64098cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb64098d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbb640dade0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652034840.196917, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMDBOr7BzbK8oWxIupdo+rgSKBo+LX6uOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+YVXkjyXRkCUhpRSlIwBbJRLpIwBdJRHQMWyBVrIo3J1fZQoaAZoCWgPQwgHJjeKrNpuQJSGlFKUaBVLwWgWR0DFsiYJE6T4dX2UKGgGaAloD0MInInpQuzHckCUhpRSlGgVS9loFkdAxbJK5Fw1i3V9lChoBmgJaA9DCJnzjH3JTXJAlIaUUpRoFUvBaBZHQMWyavhybQV1fZQoaAZoCWgPQwiqKF5lrVFxQJSGlFKUaBVL6WgWR0DFspL5IpYtdX2UKGgGaAloD0MIlBRYABPVcUCUhpRSlGgVS/BoFkdAxbK7JYDDCXV9lChoBmgJaA9DCMPzUrExAnBAlIaUUpRoFUv+aBZHQMWy5wZflZJ1fZQoaAZoCWgPQwgk7UYfMyhyQJSGlFKUaBVLxGgWR0DFswiVjZtfdX2UKGgGaAloD0MI3IR7ZR7EcECUhpRSlGgVS6toFkdAxbMk4Ia99XV9lChoBmgJaA9DCCDPLt86F3FAlIaUUpRoFUvAaBZHQMWzWMIu5Bl1fZQoaAZoCWgPQwjIlXoWxGNyQJSGlFKUaBVLwmgWR0DFs3oOFxn4dX2UKGgGaAloD0MIlbpkHCOwckCUhpRSlGgVS+hoFkdAxbOg8J2MbXV9lChoBmgJaA9DCHO7l/tkcXRAlIaUUpRoFUvIaBZHQMWzweqBErp1fZQoaAZoCWgPQwj1L0lliqRzQJSGlFKUaBVL2GgWR0DFs+Y+6iCbdX2UKGgGaAloD0MI5uWw+w6ZckCUhpRSlGgVS9FoFkdAxbQIWP91l3V9lChoBmgJaA9DCJwzorR3z3BAlIaUUpRoFUvSaBZHQMW0K6tLcsV1fZQoaAZoCWgPQwgLRiV1glpwQJSGlFKUaBVLy2gWR0DFtFCoS+QEdX2UKGgGaAloD0MI+MH51HG2cUCUhpRSlGgVS/RoFkdAxbR7WLgn+nV9lChoBmgJaA9DCFga+FENLW9AlIaUUpRoFUvZaBZHQMW0nxfv4M51fZQoaAZoCWgPQwgdOdIZ2PlxQJSGlFKUaBVL22gWR0DFtNeFQEZBdX2UKGgGaAloD0MIN/qYDwjwckCUhpRSlGgVS/FoFkdAxbUBaX8fm3V9lChoBmgJaA9DCINPc/KiinJAlIaUUpRoFUuraBZHQMW1HTtCzC11fZQoaAZoCWgPQwgPYfw0bvNuQJSGlFKUaBVLuWgWR0DFtTvs3Q2NdX2UKGgGaAloD0MIr+qsFpgOcECUhpRSlGgVS8BoFkdAxbVb5jYqXnV9lChoBmgJaA9DCKdc4V0uaHJAlIaUUpRoFUv2aBZHQMW1hoVVPvd1fZQoaAZoCWgPQwhoQpPEksNyQJSGlFKUaBVL8WgWR0DFtbD50r9VdX2UKGgGaAloD0MIizTxDnCZcUCUhpRSlGgVS7ZoFkdAxbXOvmoze3V9lChoBmgJaA9DCPq4NlSM6FtAlIaUUpRoFU3oA2gWR0DFtuPfTCtSdX2UKGgGaAloD0MIfCqnPeXgcUCUhpRSlGgVS7toFkdAxbcDfCyhSXV9lChoBmgJaA9DCD/EBgtndHNAlIaUUpRoFUvXaBZHQMW3J6l+Eyt1fZQoaAZoCWgPQwg+lGjJY7dyQJSGlFKUaBVL0mgWR0DFt0qdUbT+dX2UKGgGaAloD0MIxCXHndJhc0CUhpRSlGgVS+BoFkdAxbdvVS4vvnV9lChoBmgJaA9DCISaIVXU83FAlIaUUpRoFUuraBZHQMW3i+gUUPB1fZQoaAZoCWgPQwinzqPi/210QJSGlFKUaBVLxGgWR0DFt6xCdBjXdX2UKGgGaAloD0MIuFm8WFidcUCUhpRSlGgVTSkBaBZHQMW33sguAZt1fZQoaAZoCWgPQwjbNoyCIHhzQJSGlFKUaBVNGAFoFkdAxbgk8r7O3XV9lChoBmgJaA9DCIbHfhZLpUlAlIaUUpRoFUulaBZHQMW4QHCGetl1fZQoaAZoCWgPQwitwJDV7clyQJSGlFKUaBVNEAFoFkdAxbhvtTDO1XV9lChoBmgJaA9DCAqFCDgES3FAlIaUUpRoFUvHaBZHQMW4kRd6cAl1fZQoaAZoCWgPQwi4BOCfkshzQJSGlFKUaBVLx2gWR0DFuLKagElmdX2UKGgGaAloD0MI+s+aH39kckCUhpRSlGgVS91oFkdAxbjXLKV6eHV9lChoBmgJaA9DCEM4ZtnTYHFAlIaUUpRoFUvQaBZHQMW4+f029+R1fZQoaAZoCWgPQwguAfinFBlwQJSGlFKUaBVLvGgWR0DFuRkGC7K8dX2UKGgGaAloD0MI/OJSlTa0cECUhpRSlGgVS7toFkdAxbk3wJgLJHV9lChoBmgJaA9DCOuOxTbpZnNAlIaUUpRoFUvOaBZHQMW5b2tEG7l1fZQoaAZoCWgPQwgfMXpuoadGQJSGlFKUaBVLm2gWR0DFuYmsFMZhdX2UKGgGaAloD0MIYd9OIoKfcUCUhpRSlGgVS71oFkdAxbmpGjKxLXV9lChoBmgJaA9DCNoeveE+snJAlIaUUpRoFUvBaBZHQMW5yS+xnnN1fZQoaAZoCWgPQwgva2KB75BxQJSGlFKUaBVLumgWR0DFueekgwGodX2UKGgGaAloD0MIMnctIR/DcUCUhpRSlGgVS7toFkdAxboHLZi/f3V9lChoBmgJaA9DCLpOIy1V0XBAlIaUUpRoFUv6aBZHQMW6McA7xNJ1fZQoaAZoCWgPQwitwmaASxxyQJSGlFKUaBVLvWgWR0DFulFzfaYedX2UKGgGaAloD0MISzygbAoqcUCUhpRSlGgVS8NoFkdAxbpy0gKWs3V9lChoBmgJaA9DCK2nVl+d23JAlIaUUpRoFUvkaBZHQMW6mahxo7F1fZQoaAZoCWgPQwjUu3g/rvRwQJSGlFKUaBVLr2gWR0DFurY8ZDRddX2UKGgGaAloD0MIXYlA9c+2cUCUhpRSlGgVS+FoFkdAxbr0jzI3i3V9lChoBmgJaA9DCFMlyt5SyG9AlIaUUpRoFUu/aBZHQMW7FU0Nz8x1fZQoaAZoCWgPQwhrtvKS/61wQJSGlFKUaBVL12gWR0DFuzrihnJ1dX2UKGgGaAloD0MI9tGpK5/5RkCUhpRSlGgVS5NoFkdAxbtTwWnCO3V9lChoBmgJaA9DCIeowp8hgXNAlIaUUpRoFUvHaBZHQMW7dwUpNK11fZQoaAZoCWgPQwg33h0Zq9ZwQJSGlFKUaBVL9WgWR0DFu6OkN4JNdX2UKGgGaAloD0MIs1w2OidecECUhpRSlGgVS8VoFkdAxbvEsOoYN3V9lChoBmgJaA9DCOYGQx1WlHJAlIaUUpRoFUvzaBZHQMW7718LKFJ1fZQoaAZoCWgPQwhoXg67b89zQJSGlFKUaBVL12gWR0DFvBNdxAB1dX2UKGgGaAloD0MIH4ZWJyfzcUCUhpRSlGgVS9doFkdAxbw5ElVtGnV9lChoBmgJaA9DCGYzh6TWrnFAlIaUUpRoFUvpaBZHQMW8ePkJa7p1fZQoaAZoCWgPQwgx6lp7n8xFQJSGlFKUaBVLpWgWR0DFvJSVQhwEdX2UKGgGaAloD0MIfpBlwUREcECUhpRSlGgVS9JoFkdAxby3qL0jDHV9lChoBmgJaA9DCPzfERVqynBAlIaUUpRoFUuxaBZHQMW81Td+G491fZQoaAZoCWgPQwgMI72oHcFyQJSGlFKUaBVL6mgWR0DFvPxxWDHwdX2UKGgGaAloD0MIqFSJsvfTc0CUhpRSlGgVS/NoFkdAxb0oONHYpXV9lChoBmgJaA9DCHuhgO1gQ3FAlIaUUpRoFUvUaBZHQMW9THVwxWV1fZQoaAZoCWgPQwitvU9VYZtzQJSGlFKUaBVLx2gWR0DFvW2PeYUndX2UKGgGaAloD0MIUKbR5KIDckCUhpRSlGgVS9JoFkdAxb2RzSThYXV9lChoBmgJaA9DCIAqbtxi5XFAlIaUUpRoFUuraBZHQMW9rbeuV5d1fZQoaAZoCWgPQwgCfo0kwVpyQJSGlFKUaBVL92gWR0DFvetgnc+JdX2UKGgGaAloD0MIcHfWbvvccUCUhpRSlGgVS91oFkdAxb4QwD/2kHV9lChoBmgJaA9DCAAapUt/gnJAlIaUUpRoFUvAaBZHQMW+MP0I1Lt1fZQoaAZoCWgPQwgSEmkbv1VwQJSGlFKUaBVLrGgWR0DFvk3/YJ3QdX2UKGgGaAloD0MI4CpPICwncUCUhpRSlGgVS6toFkdAxb5py7wrlXV9lChoBmgJaA9DCHvbTIU4H3BAlIaUUpRoFUvOaBZHQMW+i5QpF1B1fZQoaAZoCWgPQwg2VmKeVe5wQJSGlFKUaBVLymgWR0DFvq4JzDGcdX2UKGgGaAloD0MImL9C5kpsckCUhpRSlGgVTQsBaBZHQMW+3CI+GGp1fZQoaAZoCWgPQwhPCB10ielwQJSGlFKUaBVL1GgWR0DFvv64BmwrdX2UKGgGaAloD0MIQ6z+CMPEcUCUhpRSlGgVS+JoFkdAxb87J3gUDnV9lChoBmgJaA9DCN5y9WPTLnBAlIaUUpRoFUu6aBZHQMW/Wg2qDK51fZQoaAZoCWgPQwgIOe//Y8VwQJSGlFKUaBVLuWgWR0DFv3kY4yXVdX2UKGgGaAloD0MIc9nonF9dckCUhpRSlGgVS7doFkdAxb+XTvy9VXV9lChoBmgJaA9DCJF/ZhDfhHJAlIaUUpRoFUvQaBZHQMW/uffwZwZ1fZQoaAZoCWgPQwgzaykgLVBxQJSGlFKUaBVL22gWR0DFv92Pq9oOdX2UKGgGaAloD0MI1J0nnrO9QUCUhpRSlGgVS49oFkdAxb/0hePaMHV9lChoBmgJaA9DCLN5HAZzC29AlIaUUpRoFUvraBZHQMXAHGax5cF1fZQoaAZoCWgPQwgJGF3eXK5wQJSGlFKUaBVNtwJoFkdAxcC/HdXT3XV9lChoBmgJaA9DCPUtc7ps1HNAlIaUUpRoFUveaBZHQMXA5VhTfix1fZQoaAZoCWgPQwjds67RMvFyQJSGlFKUaBVL7mgWR0DFwQ2yHEdedX2UKGgGaAloD0MIAyfbwJ0Ub0CUhpRSlGgVS8RoFkdAxcEuAo5PuXV9lChoBmgJaA9DCB+6oL4l33JAlIaUUpRoFUvaaBZHQMXBUbKifxt1fZQoaAZoCWgPQwgFb0ijgs9yQJSGlFKUaBVL42gWR0DFwXfWH1vmdX2UKGgGaAloD0MIJ94BnrQlUkCUhpRSlGgVS5loFkdAxcGRaW5Yo3V9lChoBmgJaA9DCAH3PH8abXFAlIaUUpRoFUvUaBZHQMXBtR/ViF11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 11724, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d230fc25f94cb76fa4a4a2a67cbc72b3f30d3b0c75a956e30978b7002dd7c00f
|
3 |
+
size 143333
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbb640987a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbb64098830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbb640988c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbb64098950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbb640989e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbb64098a70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbb64098b00>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbb64098b90>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbb64098c20>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbb64098cb0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbb64098d40>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fbb640dade0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 2000896,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652034840.196917,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMDBOr7BzbK8oWxIupdo+rgSKBo+LX6uOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+YVXkjyXRkCUhpRSlIwBbJRLpIwBdJRHQMWyBVrIo3J1fZQoaAZoCWgPQwgHJjeKrNpuQJSGlFKUaBVLwWgWR0DFsiYJE6T4dX2UKGgGaAloD0MInInpQuzHckCUhpRSlGgVS9loFkdAxbJK5Fw1i3V9lChoBmgJaA9DCJnzjH3JTXJAlIaUUpRoFUvBaBZHQMWyavhybQV1fZQoaAZoCWgPQwiqKF5lrVFxQJSGlFKUaBVL6WgWR0DFspL5IpYtdX2UKGgGaAloD0MIlBRYABPVcUCUhpRSlGgVS/BoFkdAxbK7JYDDCXV9lChoBmgJaA9DCMPzUrExAnBAlIaUUpRoFUv+aBZHQMWy5wZflZJ1fZQoaAZoCWgPQwgk7UYfMyhyQJSGlFKUaBVLxGgWR0DFswiVjZtfdX2UKGgGaAloD0MI3IR7ZR7EcECUhpRSlGgVS6toFkdAxbMk4Ia99XV9lChoBmgJaA9DCCDPLt86F3FAlIaUUpRoFUvAaBZHQMWzWMIu5Bl1fZQoaAZoCWgPQwjIlXoWxGNyQJSGlFKUaBVLwmgWR0DFs3oOFxn4dX2UKGgGaAloD0MIlbpkHCOwckCUhpRSlGgVS+hoFkdAxbOg8J2MbXV9lChoBmgJaA9DCHO7l/tkcXRAlIaUUpRoFUvIaBZHQMWzweqBErp1fZQoaAZoCWgPQwj1L0lliqRzQJSGlFKUaBVL2GgWR0DFs+Y+6iCbdX2UKGgGaAloD0MI5uWw+w6ZckCUhpRSlGgVS9FoFkdAxbQIWP91l3V9lChoBmgJaA9DCJwzorR3z3BAlIaUUpRoFUvSaBZHQMW0K6tLcsV1fZQoaAZoCWgPQwgLRiV1glpwQJSGlFKUaBVLy2gWR0DFtFCoS+QEdX2UKGgGaAloD0MI+MH51HG2cUCUhpRSlGgVS/RoFkdAxbR7WLgn+nV9lChoBmgJaA9DCFga+FENLW9AlIaUUpRoFUvZaBZHQMW0nxfv4M51fZQoaAZoCWgPQwgdOdIZ2PlxQJSGlFKUaBVL22gWR0DFtNeFQEZBdX2UKGgGaAloD0MIN/qYDwjwckCUhpRSlGgVS/FoFkdAxbUBaX8fm3V9lChoBmgJaA9DCINPc/KiinJAlIaUUpRoFUuraBZHQMW1HTtCzC11fZQoaAZoCWgPQwgPYfw0bvNuQJSGlFKUaBVLuWgWR0DFtTvs3Q2NdX2UKGgGaAloD0MIr+qsFpgOcECUhpRSlGgVS8BoFkdAxbVb5jYqXnV9lChoBmgJaA9DCKdc4V0uaHJAlIaUUpRoFUv2aBZHQMW1hoVVPvd1fZQoaAZoCWgPQwhoQpPEksNyQJSGlFKUaBVL8WgWR0DFtbD50r9VdX2UKGgGaAloD0MIizTxDnCZcUCUhpRSlGgVS7ZoFkdAxbXOvmoze3V9lChoBmgJaA9DCPq4NlSM6FtAlIaUUpRoFU3oA2gWR0DFtuPfTCtSdX2UKGgGaAloD0MIfCqnPeXgcUCUhpRSlGgVS7toFkdAxbcDfCyhSXV9lChoBmgJaA9DCD/EBgtndHNAlIaUUpRoFUvXaBZHQMW3J6l+Eyt1fZQoaAZoCWgPQwg+lGjJY7dyQJSGlFKUaBVL0mgWR0DFt0qdUbT+dX2UKGgGaAloD0MIxCXHndJhc0CUhpRSlGgVS+BoFkdAxbdvVS4vvnV9lChoBmgJaA9DCISaIVXU83FAlIaUUpRoFUuraBZHQMW3i+gUUPB1fZQoaAZoCWgPQwinzqPi/210QJSGlFKUaBVLxGgWR0DFt6xCdBjXdX2UKGgGaAloD0MIuFm8WFidcUCUhpRSlGgVTSkBaBZHQMW33sguAZt1fZQoaAZoCWgPQwjbNoyCIHhzQJSGlFKUaBVNGAFoFkdAxbgk8r7O3XV9lChoBmgJaA9DCIbHfhZLpUlAlIaUUpRoFUulaBZHQMW4QHCGetl1fZQoaAZoCWgPQwitwJDV7clyQJSGlFKUaBVNEAFoFkdAxbhvtTDO1XV9lChoBmgJaA9DCAqFCDgES3FAlIaUUpRoFUvHaBZHQMW4kRd6cAl1fZQoaAZoCWgPQwi4BOCfkshzQJSGlFKUaBVLx2gWR0DFuLKagElmdX2UKGgGaAloD0MI+s+aH39kckCUhpRSlGgVS91oFkdAxbjXLKV6eHV9lChoBmgJaA9DCEM4ZtnTYHFAlIaUUpRoFUvQaBZHQMW4+f029+R1fZQoaAZoCWgPQwguAfinFBlwQJSGlFKUaBVLvGgWR0DFuRkGC7K8dX2UKGgGaAloD0MI/OJSlTa0cECUhpRSlGgVS7toFkdAxbk3wJgLJHV9lChoBmgJaA9DCOuOxTbpZnNAlIaUUpRoFUvOaBZHQMW5b2tEG7l1fZQoaAZoCWgPQwgfMXpuoadGQJSGlFKUaBVLm2gWR0DFuYmsFMZhdX2UKGgGaAloD0MIYd9OIoKfcUCUhpRSlGgVS71oFkdAxbmpGjKxLXV9lChoBmgJaA9DCNoeveE+snJAlIaUUpRoFUvBaBZHQMW5yS+xnnN1fZQoaAZoCWgPQwgva2KB75BxQJSGlFKUaBVLumgWR0DFueekgwGodX2UKGgGaAloD0MIMnctIR/DcUCUhpRSlGgVS7toFkdAxboHLZi/f3V9lChoBmgJaA9DCLpOIy1V0XBAlIaUUpRoFUv6aBZHQMW6McA7xNJ1fZQoaAZoCWgPQwitwmaASxxyQJSGlFKUaBVLvWgWR0DFulFzfaYedX2UKGgGaAloD0MISzygbAoqcUCUhpRSlGgVS8NoFkdAxbpy0gKWs3V9lChoBmgJaA9DCK2nVl+d23JAlIaUUpRoFUvkaBZHQMW6mahxo7F1fZQoaAZoCWgPQwjUu3g/rvRwQJSGlFKUaBVLr2gWR0DFurY8ZDRddX2UKGgGaAloD0MIXYlA9c+2cUCUhpRSlGgVS+FoFkdAxbr0jzI3i3V9lChoBmgJaA9DCFMlyt5SyG9AlIaUUpRoFUu/aBZHQMW7FU0Nz8x1fZQoaAZoCWgPQwhrtvKS/61wQJSGlFKUaBVL12gWR0DFuzrihnJ1dX2UKGgGaAloD0MI9tGpK5/5RkCUhpRSlGgVS5NoFkdAxbtTwWnCO3V9lChoBmgJaA9DCIeowp8hgXNAlIaUUpRoFUvHaBZHQMW7dwUpNK11fZQoaAZoCWgPQwg33h0Zq9ZwQJSGlFKUaBVL9WgWR0DFu6OkN4JNdX2UKGgGaAloD0MIs1w2OidecECUhpRSlGgVS8VoFkdAxbvEsOoYN3V9lChoBmgJaA9DCOYGQx1WlHJAlIaUUpRoFUvzaBZHQMW7718LKFJ1fZQoaAZoCWgPQwhoXg67b89zQJSGlFKUaBVL12gWR0DFvBNdxAB1dX2UKGgGaAloD0MIH4ZWJyfzcUCUhpRSlGgVS9doFkdAxbw5ElVtGnV9lChoBmgJaA9DCGYzh6TWrnFAlIaUUpRoFUvpaBZHQMW8ePkJa7p1fZQoaAZoCWgPQwgx6lp7n8xFQJSGlFKUaBVLpWgWR0DFvJSVQhwEdX2UKGgGaAloD0MIfpBlwUREcECUhpRSlGgVS9JoFkdAxby3qL0jDHV9lChoBmgJaA9DCPzfERVqynBAlIaUUpRoFUuxaBZHQMW81Td+G491fZQoaAZoCWgPQwgMI72oHcFyQJSGlFKUaBVL6mgWR0DFvPxxWDHwdX2UKGgGaAloD0MIqFSJsvfTc0CUhpRSlGgVS/NoFkdAxb0oONHYpXV9lChoBmgJaA9DCHuhgO1gQ3FAlIaUUpRoFUvUaBZHQMW9THVwxWV1fZQoaAZoCWgPQwitvU9VYZtzQJSGlFKUaBVLx2gWR0DFvW2PeYUndX2UKGgGaAloD0MIUKbR5KIDckCUhpRSlGgVS9JoFkdAxb2RzSThYXV9lChoBmgJaA9DCIAqbtxi5XFAlIaUUpRoFUuraBZHQMW9rbeuV5d1fZQoaAZoCWgPQwgCfo0kwVpyQJSGlFKUaBVL92gWR0DFvetgnc+JdX2UKGgGaAloD0MIcHfWbvvccUCUhpRSlGgVS91oFkdAxb4QwD/2kHV9lChoBmgJaA9DCAAapUt/gnJAlIaUUpRoFUvAaBZHQMW+MP0I1Lt1fZQoaAZoCWgPQwgSEmkbv1VwQJSGlFKUaBVLrGgWR0DFvk3/YJ3QdX2UKGgGaAloD0MI4CpPICwncUCUhpRSlGgVS6toFkdAxb5py7wrlXV9lChoBmgJaA9DCHvbTIU4H3BAlIaUUpRoFUvOaBZHQMW+i5QpF1B1fZQoaAZoCWgPQwg2VmKeVe5wQJSGlFKUaBVLymgWR0DFvq4JzDGcdX2UKGgGaAloD0MImL9C5kpsckCUhpRSlGgVTQsBaBZHQMW+3CI+GGp1fZQoaAZoCWgPQwhPCB10ielwQJSGlFKUaBVL1GgWR0DFvv64BmwrdX2UKGgGaAloD0MIQ6z+CMPEcUCUhpRSlGgVS+JoFkdAxb87J3gUDnV9lChoBmgJaA9DCN5y9WPTLnBAlIaUUpRoFUu6aBZHQMW/Wg2qDK51fZQoaAZoCWgPQwgIOe//Y8VwQJSGlFKUaBVLuWgWR0DFv3kY4yXVdX2UKGgGaAloD0MIc9nonF9dckCUhpRSlGgVS7doFkdAxb+XTvy9VXV9lChoBmgJaA9DCJF/ZhDfhHJAlIaUUpRoFUvQaBZHQMW/uffwZwZ1fZQoaAZoCWgPQwgzaykgLVBxQJSGlFKUaBVL22gWR0DFv92Pq9oOdX2UKGgGaAloD0MI1J0nnrO9QUCUhpRSlGgVS49oFkdAxb/0hePaMHV9lChoBmgJaA9DCLN5HAZzC29AlIaUUpRoFUvraBZHQMXAHGax5cF1fZQoaAZoCWgPQwgJGF3eXK5wQJSGlFKUaBVNtwJoFkdAxcC/HdXT3XV9lChoBmgJaA9DCPUtc7ps1HNAlIaUUpRoFUveaBZHQMXA5VhTfix1fZQoaAZoCWgPQwjds67RMvFyQJSGlFKUaBVL7mgWR0DFwQ2yHEdedX2UKGgGaAloD0MIAyfbwJ0Ub0CUhpRSlGgVS8RoFkdAxcEuAo5PuXV9lChoBmgJaA9DCB+6oL4l33JAlIaUUpRoFUvaaBZHQMXBUbKifxt1fZQoaAZoCWgPQwgFb0ijgs9yQJSGlFKUaBVL42gWR0DFwXfWH1vmdX2UKGgGaAloD0MIJ94BnrQlUkCUhpRSlGgVS5loFkdAxcGRaW5Yo3V9lChoBmgJaA9DCAH3PH8abXFAlIaUUpRoFUvUaBZHQMXBtR/ViF11ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 11724,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 256,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f8ea02ee0a62657520b01938155ebaa1159a16ca5e03c91b6404cdba2a94c32
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48c361d53103dcc12c1de81465f27057b4f80215cf32a1a646d820410cd359ed
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0605198fb6d5cebc6fd089e8c2718537a4ddf20d50087f82f14d46ec791e6af8
|
3 |
+
size 188315
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 290.20745920063354, "std_reward": 19.34544864190856, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T19:35:56.858692"}
|