vuiseng9 commited on
Commit
a8ee624
·
1 Parent(s): 40867bf

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - glue
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ model-index:
10
+ - name: baseline-ft-mrpc-IRoberta-b-unquantized
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: glue
17
+ type: glue
18
+ config: mrpc
19
+ split: validation
20
+ args: mrpc
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8995098039215687
25
+ - name: F1
26
+ type: f1
27
+ value: 0.9266547406082289
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # baseline-ft-mrpc-IRoberta-b-unquantized
34
+
35
+ This model is a fine-tuned version of [kssteven/ibert-roberta-base](https://huggingface.co/kssteven/ibert-roberta-base) on the glue dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.5354
38
+ - Accuracy: 0.8995
39
+ - F1: 0.9267
40
+ - Combined Score: 0.9131
41
+
42
+ ## Model description
43
+
44
+ More information needed
45
+
46
+ ## Intended uses & limitations
47
+
48
+ More information needed
49
+
50
+ ## Training and evaluation data
51
+
52
+ More information needed
53
+
54
+ ## Training procedure
55
+
56
+ ### Training hyperparameters
57
+
58
+ The following hyperparameters were used during training:
59
+ - learning_rate: 2e-05
60
+ - train_batch_size: 16
61
+ - eval_batch_size: 16
62
+ - seed: 42
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - num_epochs: 5.0
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
71
+ | 0.1212 | 1.0 | 230 | 0.3401 | 0.8799 | 0.9136 | 0.8967 |
72
+ | 0.0347 | 2.0 | 460 | 0.3085 | 0.8676 | 0.9059 | 0.8868 |
73
+ | 0.0495 | 3.0 | 690 | 0.3552 | 0.8848 | 0.9174 | 0.9011 |
74
+ | 0.0024 | 4.0 | 920 | 0.4960 | 0.8824 | 0.9158 | 0.8991 |
75
+ | 0.0046 | 5.0 | 1150 | 0.5354 | 0.8995 | 0.9267 | 0.9131 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.30.2
81
+ - Pytorch 2.0.1+cu118
82
+ - Datasets 2.11.0
83
+ - Tokenizers 0.13.3