ppo-LunarLander-v2 / config.json
vrajur's picture
Lunar lander trained for DeepRL course
495c0aa
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e122f620940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e122f6209d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e122f620a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e122f620af0>", "_build": "<function ActorCriticPolicy._build at 0x7e122f620b80>", "forward": "<function ActorCriticPolicy.forward at 0x7e122f620c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e122f620ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e122f620d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7e122f620dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e122f620e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e122f620ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e122f620f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e122f61c940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690895367389404040, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb29rx7MIi6AaKBOgNHkDUEYOq6uIeWuQAAgD8AAIA/M8SOvVWpgD/UygC+tja3vnIrgb0HJpe9AAAAAAAAAAAmBxW+YcL3O52uuzpqftm4VieCvTRWITkAAIA/AACAP/MLzL3D2TS6pB/DONfwiDMeur26CGPitwAAgD8AAAAAOnUVPvRAhz+R3Ks+6VPbvnKdOj74egw+AAAAAAAAAABaAD8+/nLRPmJWD76ocYC+G7V4PYPY6r0AAAAAAAAAALPKsj0UyI26wnxcueJEFTYWSpu56Ht2OAAAgD8AAIA/AOnTPebHlD+UH5o+TfXIvlfEvz2Rx0o9AAAAAAAAAACam/u9k/ghPzq5pjzWNGS+LvDSvegn0bwAAAAAAAAAADMLKTzSTKU+5oZGvF7DiL7lbhM9dK2APAAAAAAAAAAAM4IHPey56rnikZy6flaTNY/oRbvu5rQ5AACAPwAAgD9m5+M8K60DP4pGo7wDiYa+SUoDvJbAqzoAAAAAAAAAABoRCD4xZu4+qiW7vZIQa77FHZg9A2skvgAAAAAAAAAAAEiIO65VhboyBqc6wNqTNcncirqqssK5AACAPwAAgD8AwEq8XIMEuiZPkzOr30wvIwr3uWqzn7MAAIA/AACAPwA4VT6hFRE/PVCyvQ0aZb4uX5Q96K9+vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6y95IH1OGMAWyUTfQCjAF0lEdAlw+DJQtSRHV9lChoBkdAZNrUz9CNTGgHTegDaAhHQJcU8P5HmRx1fZQoaAZHQGSNaUqx1PpoB03oA2gIR0CXFb+M6zVudX2UKGgGR0BicFDtw71aaAdN6ANoCEdAlxoKnBLwnnV9lChoBkdAYRITJyQxOGgHTegDaAhHQJcabq7iADt1fZQoaAZHQGZhUVrRBu5oB03oA2gIR0CXIBLhrFfidX2UKGgGR0BkjTIeYD1XaAdN6ANoCEdAly7fLxI8Q3V9lChoBkdAZr59+gDifmgHTegDaAhHQJcwXx0+1Sh1fZQoaAZHQGMT0g8r7O5oB03oA2gIR0CXMrk/8l5XdX2UKGgGR0Bn6MiMYMvzaAdN6ANoCEdAl0VapgkTpXV9lChoBkdAZT3i704BFWgHTegDaAhHQJdHhHNHH3l1fZQoaAZHQGRXF8gIQe5oB03oA2gIR0CXSE9aEBbOdX2UKGgGR0BhxWmHgxagaAdN6ANoCEdAl0uAJ5VwP3V9lChoBkdAP13PiT+vQmgHS+RoCEdAl1Fkb5uZTnV9lChoBkdAZ5r433pOe2gHTegDaAhHQJdU1szl90B1fZQoaAZHQGPIYrSVnmJoB03oA2gIR0CXWHWCEpRXdX2UKGgGR0BjTlzltCRfaAdN6ANoCEdAl117laKUFHV9lChoBkdAZdJ212JSBWgHTegDaAhHQJdfU9ECvHN1fZQoaAZHQGCYQsPJ7sxoB03oA2gIR0CXZT/GEPDpdX2UKGgGR0Bhm8UfxMFmaAdN6ANoCEdAl2X6s2eg+XV9lChoBkdAY0ORf4REnmgHTegDaAhHQJdqLaJyhi91fZQoaAZHQGFbnRLK3d9oB03oA2gIR0CXarfnwG4adX2UKGgGRz/x89GI9C/oaAdL5mgIR0CXbXAPd2xIdX2UKGgGR0BjQc4ecQRPaAdN6ANoCEdAl3BhJAdGRXV9lChoBkdAUR0olUp/gGgHS+1oCEdAl3dm+K0laHV9lChoBkdAYodYtg8bJmgHTegDaAhHQJd68tOEdvN1fZQoaAZHQGQMFj/dZaFoB03oA2gIR0CXfA4PPLPldX2UKGgGR0BklwRTS9dvaAdN6ANoCEdAl33qxoqTbHV9lChoBkdAYwhYoy9EkWgHTegDaAhHQJeU7XarWAh1fZQoaAZHQGCMfMwDeTFoB03oA2gIR0CXlgMGX5WSdX2UKGgGR0Bhu5gPVd5ZaAdN6ANoCEdAl5l29L6DXnV9lChoBkdAYRiQDFId2mgHTegDaAhHQJef4CfYjB51fZQoaAZHQGM1i9RJmNBoB03oA2gIR0CXo4PT5O8DdX2UKGgGR0BkZeZRbbDeaAdN6ANoCEdAl6b6kuYhMnV9lChoBkdAZeGMBp5/smgHTegDaAhHQJeqt6w+t8x1fZQoaAZHQGQ6NwaR6nloB03oA2gIR0CXsW3c580DdX2UKGgGR0BkSGwmmce9aAdN6ANoCEdAl7I6sdT5wnV9lChoBkdAYzgI42jwhGgHTegDaAhHQJe3X4AS39d1fZQoaAZHQGRva2WpqAVoB03oA2gIR0CXuqZBsyi3dX2UKGgGR0BinIuwosqbaAdN6ANoCEdAl74MhTwUg3V9lChoBkdAcAxwI+nqFGgHTUADaAhHQJe/rBxgiNd1fZQoaAZHQGTtUZeiSJVoB03oA2gIR0CXyN5Qgs9TdX2UKGgGR0BnMDvoePq+aAdN6ANoCEdAl841ruYx+XV9lChoBkdAcD7kiUxEfGgHTVoBaAhHQJfQSDSPU8V1fZQoaAZHQGO9637UG3ZoB03oA2gIR0CX0FgJ1JUYdX2UKGgGR0BcngHE/B3zaAdN6ANoCEdAl+UavFFUhnV9lChoBkdAYXuYVqN6xGgHTegDaAhHQJfl98stkFx1fZQoaAZHQGUy9xZMcp9oB03oA2gIR0CX6V8nuy/sdX2UKGgGR0Bj/oWznieeaAdN6ANoCEdAl+8at1ZDA3V9lChoBkdAaC4OYplSTGgHTegDaAhHQJfycysS00F1fZQoaAZHQGL4aUzKs+5oB03oA2gIR0CX9wfKISDidX2UKGgGR0BolBtBOYY0aAdN6ANoCEdAl/uFbaAWi3V9lChoBkdAZib863iJf2gHTegDaAhHQJgCLRzBAOd1fZQoaAZHQGUK4wAU+LZoB03oA2gIR0CYAvupS75EdX2UKGgGR0BlJ8dq+JxeaAdN6ANoCEdAmArcNhE0BXV9lChoBkdAZ38T+vQnhWgHTegDaAhHQJgOBlNDc/N1fZQoaAZHQGXIXta6jFhoB03oA2gIR0CYD1YG+sYEdX2UKGgGR0BmNaRuCPIXaAdN6ANoCEdAmBWJYDDCQHV9lChoBkdAZb2SU1Q662gHTegDaAhHQJgaevpyIYZ1fZQoaAZHQGIKyYoiLVFoB03oA2gIR0CYHJNutOmBdX2UKGgGR0BhdSn752yLaAdN6ANoCEdAmByj6nBLwnV9lChoBkdAXo1+mWMS9WgHTegDaAhHQJgzs7hegL91fZQoaAZHQGKq/ChvitJoB03oA2gIR0CYNIO/cnE3dX2UKGgGR0Bjae7xusLfaAdN6ANoCEdAmDf0ZFXq7nV9lChoBkdAYRymhM8HOmgHTegDaAhHQJg+H0Dlo111fZQoaAZHQGWYWLYPGyZoB03oA2gIR0CYQW6AvtdBdX2UKGgGR0BwJ7epGWleaAdNnQJoCEdAmEOdBWxQi3V9lChoBkdAY5NRmbsniWgHTegDaAhHQJhEgl8gIQh1fZQoaAZHQGU6WgWac7RoB03oA2gIR0CYR4+o99tudX2UKGgGR0BiJC7PIGQkaAdN6ANoCEdAmE1a1LJ0XHV9lChoBkdAZdmarFOwgWgHTegDaAhHQJhOCi7Ciyp1fZQoaAZHQF99phnanJloB03oA2gIR0CYWJd92HLzdX2UKGgGR0BhJ+YQarFPaAdN6ANoCEdAmFpWYWtU43V9lChoBkdAYfzx3FDOT2gHTegDaAhHQJhjwgTyrgh1fZQoaAZHQGOANPxhDw9oB03oA2gIR0CYaMHSWqtHdX2UKGgGR0BmNIS13MY/aAdN6ANoCEdAmGrOyZ8a43V9lChoBkdAX29eTmnwX2gHTegDaAhHQJhq307KaG51fZQoaAZHQHEMFuejEehoB02ZA2gIR0CYaxt29tdidX2UKGgGR0BnrFUS7GvPaAdN6ANoCEdAmG/ZccENfHV9lChoBkdAY9kbSZ0CBGgHTegDaAhHQJiDnf1pTMt1fZQoaAZHQGJZo3Jgb6xoB03oA2gIR0CYic51eSjhdX2UKGgGR0BfWGsRxtHhaAdN6ANoCEdAmI3e/tY0VXV9lChoBkdAbpLAwfyPMmgHTUQCaAhHQJiPykqMFU11fZQoaAZHQGV9jRD1GspoB03oA2gIR0CYkP7wazeGdX2UKGgGR0BiJJEMLF4taAdN6ANoCEdAmJJC/sVtXXV9lChoBkdAZa3lnRLK3mgHTegDaAhHQJiW0tapxWF1fZQoaAZHQGLDIqLCN0hoB03oA2gIR0CYnT9F4LThdX2UKGgGR0BlceIEbHZLaAdN6ANoCEdAmJ38SwnpjnV9lChoBkdAYpkWPcSGrWgHTegDaAhHQJiphpsXSBt1fZQoaAZHQHBQ+zQeFL5oB03pAWgIR0CYqf0NSZSfdX2UKGgGR0BkqXAIppevaAdN6ANoCEdAmLIBASnLq3V9lChoBkdAZZ970nPVu2gHTegDaAhHQJi3U3S8an91fZQoaAZHQD6nxPO6d2BoB0vdaAhHQJi3+e4Cp3p1fZQoaAZHQGeKgBLf1pVoB03oA2gIR0CYuVUI9kjHdX2UKGgGR0BjnOGdqcmTaAdN6ANoCEdAmLlkmY0EYHV9lChoBkdAYD/aUzKs+2gHTegDaAhHQJi5mQp4KQd1fZQoaAZHQHCFdz8xbjdoB02JAmgIR0CYumPQfIS2dX2UKGgGR0BxICpXIU8FaAdN6QJoCEdAmLzkB4lhPXV9lChoBkdAQ361Cw8nu2gHS9RoCEdAmL2ng1m8NHV9lChoBkdAYKONedCmdmgHTegDaAhHQJi9xpmEoOR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}