issam9 commited on
Commit
2ddb51b
·
verified ·
1 Parent(s): b2a6584

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -1
README.md CHANGED
@@ -5,4 +5,46 @@ language:
5
  - el
6
  metrics:
7
  - wer
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  - el
6
  metrics:
7
  - wer
8
+ ---
9
+
10
+ # Whisper small finetuned for Greek transcription
11
+
12
+ ## How to use
13
+ You can use the model for Greek ASR:
14
+
15
+ ```python
16
+ from transformers import WhisperProcessor, WhisperForConditionalGeneration
17
+ from datasets import Audio, load_dataset
18
+
19
+ # load model and processor
20
+ processor = WhisperProcessor.from_pretrained("voxreality/whisper-small-el-finetune")
21
+ model = WhisperForConditionalGeneration.from_pretrained("voxreality/whisper-small-el-finetune")
22
+ forced_decoder_ids = processor.get_decoder_prompt_ids(language="greek", task="transcribe")
23
+
24
+ # load streaming dataset and read first audio sample
25
+ ds = load_dataset("mozilla-foundation/common_voice_11_0", "el", split="test", streaming=True)
26
+ ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
27
+ input_speech = next(iter(ds))["audio"]
28
+ input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
29
+
30
+ # generate token ids
31
+ predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
32
+
33
+ # decode token ids to text
34
+ transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
35
+ ```
36
+
37
+ You can also use an HF pipeline:
38
+ ```python
39
+ from transformers import pipeline
40
+ from datasets import Audio, load_dataset
41
+
42
+ ds = load_dataset("mozilla-foundation/common_voice_11_0", "el", split="test", streaming=True)
43
+ ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
44
+ input_speech = next(iter(ds))["audio"]
45
+
46
+ pipe = pipeline("automatic-speech-recognition", model='voxreality/whisper-small-el-finetune',
47
+ device='cpu', batch_size=32)
48
+
49
+ transcription = pipe(input_speech['array'], generate_kwargs = {"language":f"<|el|>","task": "transcribe"})
50
+ ```