Pawel-M commited on
Commit
60f5fd9
1 Parent(s): 3c6a79c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -0
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: translation
3
+ ---
4
+
5
+ The model and the tokenizer are based on [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M).
6
+
7
+ We trained the model to use one sentence of context. The context is prepended to the input sentence with the `sep_token` in between. We used a subset of the [OpenSubtitles2018]( https://huggingface.co/datasets/open_subtitles) dataset for training. We trained on the interleaved dataset for all directions between the following languages: English, German, Dutch, Spanish, Italian, and Greek.
8
+ The tokenizer of the base model was not changed. For the language codes, see the base model.
9
+
10
+ Use this code for translation:
11
+ ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
12
+
13
+ model_name = 'voxreality/src_ctx_aware_nllb_600M'
14
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
15
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
16
+
17
+ max_length = 100
18
+ src_lang = 'eng_Latn'
19
+ tgt_lang = 'deu_Latn'
20
+ context_text = 'This is an optional context sentence.' # use '' empty string if not context should be used
21
+ sentence_text = 'Text to be translated.'
22
+ input_text = f'{context_text} {tokenizer.sep_token} {sentence_text}'
23
+
24
+ tokenizer.src_lang = src_lang
25
+ inputs = tokenizer(input_text, return_tensors='pt').to(model.device)
26
+ model_output = model.generate(**inputs,
27
+ forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang],
28
+ max_length=max_length)
29
+ output_text = tokenizer.batch_decode(model_output, skip_special_tokens=True)[0]
30
+
31
+ print(output_text)
32
+ ```
33
+
34
+ You can also use the pipeline
35
+ ```
36
+ from transformers import pipeline
37
+
38
+ model_name = 'voxreality/src_ctx_aware_nllb_600M'
39
+ translation_pipeline = pipeline("translation", model=model_name)
40
+ src_lang = 'eng_Latn'
41
+ tgt_lang = 'deu_Latn'
42
+ context_text = 'This is an optional context sentence.' # use '' empty string if not context should be used
43
+ sentence_text = 'Text to be translated.'
44
+ input_texts = [f'{context_text} {translation_pipeline.tokenizer.sep_token} {sentence_text}']
45
+
46
+ pipeline_output = translation_pipeline(input_texts, src_lang=src_lang, tgt_lang=tgt_lang)
47
+
48
+ print(pipeline_output[0]['translation_text'])
49
+
50
+ ```