Upload fine-tuned model, tokenizer, and supporting files for modernbert-imdb-sentiment
Browse files- README.md +50 -0
- config.yaml +3 -3
- inference.py +44 -58
- pytorch_model.bin +2 -2
    	
        README.md
    CHANGED
    
    | @@ -9,6 +9,16 @@ datasets: | |
| 9 | 
             
            metrics:
         | 
| 10 | 
             
            - accuracy
         | 
| 11 | 
             
            - f1
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 12 | 
             
            ---
         | 
| 13 |  | 
| 14 | 
             
            # ModernBERT IMDb Sentiment Analysis Model
         | 
| @@ -69,3 +79,43 @@ print(f"Predicted label: {predicted_label}") | |
| 69 |  | 
| 70 | 
             
            ### Model Citation
         | 
| 71 | 
             
            - **Citation**: voxmenthe/modernbert-imdb-sentiment
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 9 | 
             
            metrics:
         | 
| 10 | 
             
            - accuracy
         | 
| 11 | 
             
            - f1
         | 
| 12 | 
            +
            title: IMDb Sentiment Analyzer
         | 
| 13 | 
            +
            emoji: 🤗
         | 
| 14 | 
            +
            colorFrom: blue
         | 
| 15 | 
            +
            colorTo: green
         | 
| 16 | 
            +
            sdk: gradio
         | 
| 17 | 
            +
            sdk_version: "5.29.0" # Verify this matches your Gradio version in requirements.txt
         | 
| 18 | 
            +
            app_file: app.py
         | 
| 19 | 
            +
            pinned: false
         | 
| 20 | 
            +
            hf_oauth: false
         | 
| 21 | 
            +
            disable_embedding: false
         | 
| 22 | 
             
            ---
         | 
| 23 |  | 
| 24 | 
             
            # ModernBERT IMDb Sentiment Analysis Model
         | 
|  | |
| 79 |  | 
| 80 | 
             
            ### Model Citation
         | 
| 81 | 
             
            - **Citation**: voxmenthe/modernbert-imdb-sentiment
         | 
| 82 | 
            +
             | 
| 83 | 
            +
            ## IMDb Sentiment Analyzer - Gradio App
         | 
| 84 | 
            +
             | 
| 85 | 
            +
            This repository contains a Gradio application for sentiment analysis of IMDb movie reviews.
         | 
| 86 | 
            +
            It uses a fine-tuned ModernBERT model hosted on Hugging Face.
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            **Space Link:** [voxmenthe/imdb-sentiment-demo](https://huggingface.co/spaces/voxmenthe/imdb-sentiment-demo)
         | 
| 89 | 
            +
            **Model Link:** [voxmenthe/modernbert-imdb-sentiment](https://huggingface.co/voxmenthe/modernbert-imdb-sentiment)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            ## Features
         | 
| 92 | 
            +
             | 
| 93 | 
            +
            *   **Text Input**: Analyze custom movie review text.
         | 
| 94 | 
            +
            *   **Random IMDb Sample**: Load a random review from the IMDb test dataset.
         | 
| 95 | 
            +
            *   **Sentiment Prediction**: Classifies sentiment as Positive or Negative.
         | 
| 96 | 
            +
            *   **True Label Display**: Shows the actual IMDb label for loaded samples.
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            ## Setup & Running Locally
         | 
| 99 | 
            +
             | 
| 100 | 
            +
            1.  **Clone the repository (or your Space repository):**
         | 
| 101 | 
            +
                ```bash
         | 
| 102 | 
            +
                git clone https://huggingface.co/spaces/voxmenthe/imdb-sentiment-demo
         | 
| 103 | 
            +
                cd imdb-sentiment-demo
         | 
| 104 | 
            +
                ```
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            2.  **Install dependencies:**
         | 
| 107 | 
            +
                Ensure you have Python 3.11+ installed.
         | 
| 108 | 
            +
                ```bash
         | 
| 109 | 
            +
                pip install -r requirements.txt
         | 
| 110 | 
            +
                ```
         | 
| 111 | 
            +
             | 
| 112 | 
            +
            3.  **Run the application:**
         | 
| 113 | 
            +
                ```bash
         | 
| 114 | 
            +
                python app.py
         | 
| 115 | 
            +
                ```
         | 
| 116 | 
            +
                The application will be available at `http://127.0.0.1:7860`.
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            ## Model Information
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            The sentiment analysis model is a `ModernBERT` architecture fine-tuned on the IMDb dataset. The specific checkpoint used is `mean_epoch5_0.9575acc_0.9575f1.pt` before being uploaded to `voxmenthe/modernbert-imdb-sentiment`.
         | 
| 121 | 
            +
             | 
    	
        config.yaml
    CHANGED
    
    | @@ -1,12 +1,12 @@ | |
| 1 | 
             
            model:
         | 
| 2 | 
            -
               | 
| 3 | 
            -
               | 
| 4 | 
             
              max_length: 880 # 256
         | 
| 5 | 
             
              dropout: 0.1
         | 
| 6 | 
             
              pooling_strategy: "mean" # Current default, change as needed
         | 
| 7 |  | 
| 8 | 
             
            inference:
         | 
| 9 | 
             
              # Default path, can be overridden
         | 
| 10 | 
            -
              model_path: " | 
| 11 | 
             
              # Using the same max_length as training for consistency
         | 
| 12 | 
             
              max_length: 880 # 256
         | 
|  | |
| 1 | 
             
            model:
         | 
| 2 | 
            +
              name_or_path: "voxmenthe/modernbert-imdb-sentiment"
         | 
| 3 | 
            +
              tokenizer_name_or_path: "answerdotai/ModernBERT-base"
         | 
| 4 | 
             
              max_length: 880 # 256
         | 
| 5 | 
             
              dropout: 0.1
         | 
| 6 | 
             
              pooling_strategy: "mean" # Current default, change as needed
         | 
| 7 |  | 
| 8 | 
             
            inference:
         | 
| 9 | 
             
              # Default path, can be overridden
         | 
| 10 | 
            +
              model_path: "voxmenthe/modernbert-imdb-sentiment"
         | 
| 11 | 
             
              # Using the same max_length as training for consistency
         | 
| 12 | 
             
              max_length: 880 # 256
         | 
    	
        inference.py
    CHANGED
    
    | @@ -1,79 +1,65 @@ | |
| 1 | 
             
            import torch
         | 
| 2 | 
            -
            from transformers import AutoTokenizer, AutoModelForSequenceClassification
         | 
| 3 | 
            -
             | 
| 4 | 
            -
            from transformers import ModernBertConfig
         | 
| 5 | 
             
            from typing import Dict, Any
         | 
| 6 | 
             
            import yaml
         | 
| 7 | 
            -
            import os
         | 
| 8 | 
            -
             | 
| 9 |  | 
| 10 | 
             
            class SentimentInference:
         | 
| 11 | 
             
                def __init__(self, config_path: str = "config.yaml"):
         | 
| 12 | 
            -
                    """Load configuration and initialize model and tokenizer."""
         | 
| 13 | 
             
                    with open(config_path, 'r') as f:
         | 
| 14 | 
            -
                         | 
| 15 | 
            -
                    
         | 
| 16 | 
            -
                    model_cfg = config.get('model', {})
         | 
| 17 | 
            -
                    inference_cfg = config.get('inference', {})
         | 
| 18 |  | 
| 19 | 
            -
                     | 
| 20 | 
            -
                     | 
| 21 | 
            -
                                                         os.path.join(model_cfg.get('output_dir', 'checkpoints'), 'best_model.pt'))
         | 
| 22 |  | 
| 23 | 
            -
                     | 
| 24 | 
            -
                     | 
| 25 | 
            -
             | 
| 26 | 
            -
             | 
| 27 | 
            -
                    self.max_length = inference_cfg.get('max_length', model_cfg.get('max_length', 256))
         | 
| 28 |  | 
| 29 | 
            -
                     | 
| 30 | 
            -
                    print(f"Loading tokenizer from: {base_model_name}")
         | 
| 31 | 
            -
                    self.tokenizer = AutoTokenizer.from_pretrained(base_model_name)
         | 
| 32 | 
            -
                    
         | 
| 33 | 
            -
                    # Load base BERT config from the base model name
         | 
| 34 | 
            -
                    print(f"Loading ModernBertConfig from: {base_model_name}")
         | 
| 35 | 
            -
                    bert_config = ModernBertConfig.from_pretrained(base_model_name) 
         | 
| 36 | 
            -
                    
         | 
| 37 | 
            -
                    # --- Apply any necessary overrides from your config to the loaded bert_config --- 
         | 
| 38 | 
            -
                    # For example, if your ModernBertForSentiment expects specific config values beyond the base BERT model.
         | 
| 39 | 
            -
                    # Your current ModernBertForSentiment takes the entire config object, which might implicitly carry these.
         | 
| 40 | 
            -
                    # However, explicitly setting them on bert_config loaded from HF is safer if they are architecturally relevant.
         | 
| 41 | 
            -
                    bert_config.classifier_dropout = model_cfg.get('dropout', bert_config.classifier_dropout) # Example
         | 
| 42 | 
            -
                    # Ensure num_labels is set if your inference model needs it (usually for HF pipeline, less so for manual predict)
         | 
| 43 | 
            -
                    # bert_config.num_labels = model_cfg.get('num_labels', 1) # Typically 1 for binary sentiment regression-style output
         | 
| 44 |  | 
| 45 | 
            -
                     | 
| 46 | 
            -
                    # that ModernBertForSentiment receives, as it uses these to build its layers.
         | 
| 47 | 
            -
                    # These are usually fine-tuning specific, not part of the base HF config, so they should come from your model_cfg.
         | 
| 48 | 
            -
                    bert_config.pooling_strategy = model_cfg.get('pooling_strategy', 'cls')
         | 
| 49 | 
            -
                    bert_config.num_weighted_layers = model_cfg.get('num_weighted_layers', 4)
         | 
| 50 | 
            -
                    bert_config.loss_function = model_cfg.get('loss_function', {'name': 'SentimentWeightedLoss', 'params': {}}) # Needed by model init
         | 
| 51 | 
            -
                    # Ensure num_labels is explicitly set for the model's classifier head
         | 
| 52 | 
            -
                    bert_config.num_labels = 1 # For sentiment (positive/negative) often treated as 1 logit output
         | 
| 53 |  | 
| 54 | 
            -
                    print(" | 
| 55 | 
            -
                    self. | 
| 56 |  | 
| 57 | 
            -
                    print(f"Loading  | 
| 58 | 
            -
                    # Load the  | 
| 59 | 
            -
                     | 
|  | |
|  | |
| 60 |  | 
| 61 | 
            -
                    #  | 
| 62 | 
            -
                    #  | 
| 63 | 
            -
                     | 
| 64 | 
            -
             | 
| 65 | 
            -
                     | 
| 66 | 
            -
             | 
| 67 | 
            -
             | 
| 68 | 
            -
             | 
| 69 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 70 | 
             
                    self.model.eval()
         | 
| 71 | 
            -
                    print("Model loaded successfully.")
         | 
| 72 |  | 
| 73 | 
             
                def predict(self, text: str) -> Dict[str, Any]:
         | 
| 74 | 
            -
                    inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=self.max_length)
         | 
| 75 | 
             
                    with torch.no_grad():
         | 
| 76 | 
             
                        outputs = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
         | 
| 77 | 
            -
                    logits = outputs | 
|  | |
|  | |
| 78 | 
             
                    prob = torch.sigmoid(logits).item()
         | 
| 79 | 
             
                    return {"sentiment": "positive" if prob > 0.5 else "negative", "confidence": prob}
         | 
|  | |
| 1 | 
             
            import torch
         | 
| 2 | 
            +
            from transformers import AutoTokenizer, AutoModelForSequenceClassification, ModernBertConfig
         | 
| 3 | 
            +
            # models.py (containing ModernBertForSentiment) will be loaded from the Hub due to trust_remote_code=True
         | 
|  | |
| 4 | 
             
            from typing import Dict, Any
         | 
| 5 | 
             
            import yaml
         | 
|  | |
|  | |
| 6 |  | 
| 7 | 
             
            class SentimentInference:
         | 
| 8 | 
             
                def __init__(self, config_path: str = "config.yaml"):
         | 
| 9 | 
            +
                    """Load configuration and initialize model and tokenizer from Hugging Face Hub."""
         | 
| 10 | 
             
                    with open(config_path, 'r') as f:
         | 
| 11 | 
            +
                        config_data = yaml.safe_load(f)
         | 
|  | |
|  | |
|  | |
| 12 |  | 
| 13 | 
            +
                    model_yaml_cfg = config_data.get('model', {})
         | 
| 14 | 
            +
                    inference_yaml_cfg = config_data.get('inference', {})
         | 
|  | |
| 15 |  | 
| 16 | 
            +
                    model_hf_repo_id = model_yaml_cfg.get('name_or_path')
         | 
| 17 | 
            +
                    if not model_hf_repo_id:
         | 
| 18 | 
            +
                        raise ValueError("model.name_or_path must be specified in config.yaml (e.g., 'username/model_name')")
         | 
|  | |
|  | |
| 19 |  | 
| 20 | 
            +
                    tokenizer_hf_repo_id = model_yaml_cfg.get('tokenizer_name_or_path', model_hf_repo_id)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 21 |  | 
| 22 | 
            +
                    self.max_length = inference_yaml_cfg.get('max_length', model_yaml_cfg.get('max_length', 512))
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 23 |  | 
| 24 | 
            +
                    print(f"Loading tokenizer from: {tokenizer_hf_repo_id}")
         | 
| 25 | 
            +
                    self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_hf_repo_id)
         | 
| 26 |  | 
| 27 | 
            +
                    print(f"Loading base ModernBertConfig from: {model_hf_repo_id}")
         | 
| 28 | 
            +
                    # Load the config that was uploaded with the model (config.json in the HF repo)
         | 
| 29 | 
            +
                    # This config should already have the correct architecture defined by ModernBertConfig.
         | 
| 30 | 
            +
                    # We then augment it with any custom parameters needed by ModernBertForSentiment's __init__.
         | 
| 31 | 
            +
                    loaded_config = ModernBertConfig.from_pretrained(model_hf_repo_id)
         | 
| 32 |  | 
| 33 | 
            +
                    # Augment loaded_config with parameters from model_yaml_cfg needed for ModernBertForSentiment initialization
         | 
| 34 | 
            +
                    # These should reflect how the model was trained and its specific custom head.
         | 
| 35 | 
            +
                    loaded_config.pooling_strategy = model_yaml_cfg.get('pooling_strategy', 'mean') # Default to 'mean' as per your models.py change
         | 
| 36 | 
            +
                    loaded_config.num_weighted_layers = model_yaml_cfg.get('num_weighted_layers', 4)
         | 
| 37 | 
            +
                    loaded_config.classifier_dropout = model_yaml_cfg.get('dropout') # Allow None if not in yaml
         | 
| 38 | 
            +
                    # num_labels should ideally be in the config.json uploaded to HF, but can be set here if needed.
         | 
| 39 | 
            +
                    # For binary sentiment with a single logit output, num_labels is 1.
         | 
| 40 | 
            +
                    loaded_config.num_labels = model_yaml_cfg.get('num_labels', 1)
         | 
| 41 | 
            +
                    # The loss_function might not be strictly needed for inference if the model doesn't use it in forward pass for eval,
         | 
| 42 | 
            +
                    # but if ModernBertForSentiment.__init__ requires it, it must be provided.
         | 
| 43 | 
            +
                    # Assuming it's not critical for basic inference here to simplify.
         | 
| 44 | 
            +
                    # loaded_config.loss_function = model_yaml_cfg.get('loss_function', {'name': '...', 'params': {}})
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                    print(f"Instantiating and loading model weights for {model_hf_repo_id}...")
         | 
| 47 | 
            +
                    # trust_remote_code=True allows loading models.py (containing ModernBertForSentiment)
         | 
| 48 | 
            +
                    # from the Hugging Face model repository.
         | 
| 49 | 
            +
                    self.model = AutoModelForSequenceClassification.from_pretrained(
         | 
| 50 | 
            +
                        model_hf_repo_id,
         | 
| 51 | 
            +
                        config=loaded_config, # Pass the augmented config
         | 
| 52 | 
            +
                        trust_remote_code=True
         | 
| 53 | 
            +
                    )
         | 
| 54 | 
             
                    self.model.eval()
         | 
| 55 | 
            +
                    print(f"Model {model_hf_repo_id} loaded successfully from Hugging Face Hub.")
         | 
| 56 |  | 
| 57 | 
             
                def predict(self, text: str) -> Dict[str, Any]:
         | 
| 58 | 
            +
                    inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=self.max_length, padding=True)
         | 
| 59 | 
             
                    with torch.no_grad():
         | 
| 60 | 
             
                        outputs = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
         | 
| 61 | 
            +
                    logits = outputs.get("logits") # Use .get for safety
         | 
| 62 | 
            +
                    if logits is None:
         | 
| 63 | 
            +
                        raise ValueError("Model output did not contain 'logits'. Check model's forward pass.")
         | 
| 64 | 
             
                    prob = torch.sigmoid(logits).item()
         | 
| 65 | 
             
                    return {"sentiment": "positive" if prob > 0.5 else "negative", "confidence": prob}
         | 
    	
        pytorch_model.bin
    CHANGED
    
    | @@ -1,3 +1,3 @@ | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            -
            oid sha256: | 
| 3 | 
            -
            size  | 
|  | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:106c846a077b9a1c445b0fa4b5d490d5e58a81270399da15064a4ee3a3b7e1ec
         | 
| 3 | 
            +
            size 600856675
         |