|
|
import torch.nn as nn |
|
|
|
|
|
class BidirectionalLSTM(nn.Module): |
|
|
|
|
|
def __init__(self, input_size, hidden_size, output_size): |
|
|
super(BidirectionalLSTM, self).__init__() |
|
|
self.rnn = nn.LSTM(input_size, hidden_size, bidirectional=True, batch_first=True) |
|
|
self.linear = nn.Linear(hidden_size * 2, output_size) |
|
|
|
|
|
def forward(self, input): |
|
|
""" |
|
|
input : visual feature [batch_size x T x input_size] |
|
|
output : contextual feature [batch_size x T x output_size] |
|
|
""" |
|
|
try: |
|
|
self.rnn.flatten_parameters() |
|
|
except: |
|
|
pass |
|
|
recurrent, _ = self.rnn(input) |
|
|
output = self.linear(recurrent) |
|
|
return output |
|
|
|
|
|
class VGG_FeatureExtractor(nn.Module): |
|
|
|
|
|
def __init__(self, input_channel, output_channel=256): |
|
|
super(VGG_FeatureExtractor, self).__init__() |
|
|
self.output_channel = [int(output_channel / 8), int(output_channel / 4), |
|
|
int(output_channel / 2), output_channel] |
|
|
self.ConvNet = nn.Sequential( |
|
|
nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True), |
|
|
nn.MaxPool2d(2, 2), |
|
|
nn.Conv2d(self.output_channel[0], self.output_channel[1], 3, 1, 1), nn.ReLU(True), |
|
|
nn.MaxPool2d(2, 2), |
|
|
nn.Conv2d(self.output_channel[1], self.output_channel[2], 3, 1, 1), nn.ReLU(True), |
|
|
nn.Conv2d(self.output_channel[2], self.output_channel[2], 3, 1, 1), nn.ReLU(True), |
|
|
nn.MaxPool2d((2, 1), (2, 1)), |
|
|
nn.Conv2d(self.output_channel[2], self.output_channel[3], 3, 1, 1, bias=False), |
|
|
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True), |
|
|
nn.Conv2d(self.output_channel[3], self.output_channel[3], 3, 1, 1, bias=False), |
|
|
nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True), |
|
|
nn.MaxPool2d((2, 1), (2, 1)), |
|
|
nn.Conv2d(self.output_channel[3], self.output_channel[3], 2, 1, 0), nn.ReLU(True)) |
|
|
|
|
|
def forward(self, input): |
|
|
return self.ConvNet(input) |
|
|
|
|
|
class Model(nn.Module): |
|
|
|
|
|
def __init__(self, input_channel, output_channel, hidden_size, num_class): |
|
|
super(Model, self).__init__() |
|
|
""" FeatureExtraction """ |
|
|
self.FeatureExtraction = VGG_FeatureExtractor(input_channel, output_channel) |
|
|
self.FeatureExtraction_output = output_channel |
|
|
self.AdaptiveAvgPool = nn.AdaptiveAvgPool2d((None, 1)) |
|
|
|
|
|
""" Sequence modeling""" |
|
|
self.SequenceModeling = nn.Sequential( |
|
|
BidirectionalLSTM(self.FeatureExtraction_output, hidden_size, hidden_size), |
|
|
BidirectionalLSTM(hidden_size, hidden_size, hidden_size)) |
|
|
self.SequenceModeling_output = hidden_size |
|
|
|
|
|
""" Prediction """ |
|
|
self.Prediction = nn.Linear(self.SequenceModeling_output, num_class) |
|
|
|
|
|
|
|
|
def forward(self, input, text): |
|
|
""" Feature extraction stage """ |
|
|
visual_feature = self.FeatureExtraction(input) |
|
|
visual_feature = self.AdaptiveAvgPool(visual_feature.permute(0, 3, 1, 2)) |
|
|
visual_feature = visual_feature.squeeze(3) |
|
|
|
|
|
""" Sequence modeling stage """ |
|
|
contextual_feature = self.SequenceModeling(visual_feature) |
|
|
|
|
|
""" Prediction stage """ |
|
|
prediction = self.Prediction(contextual_feature.contiguous()) |
|
|
|
|
|
return prediction |
|
|
|