asahi417 commited on
Commit
2902854
·
1 Parent(s): 1513b28

commit files to HF hub

Browse files
README.md CHANGED
@@ -33,27 +33,27 @@ model-index:
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
- value: 0.0
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
- value: 1.14
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
- value: 8.03
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
- value: 59.66
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
- value: 55.14
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg`
52
- This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-ko-60000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-60000) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
- - **Language model:** [vocabtrimmer/mt5-small-trimmed-ko-60000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-60000)
57
  - **Language:** ko
58
  - **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
@@ -89,14 +89,14 @@ output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
- | BERTScore | 59.66 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
93
- | Bleu_1 | 1.05 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
94
- | Bleu_2 | 0.43 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
95
- | Bleu_3 | 0.18 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
96
- | Bleu_4 | 0 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
97
- | METEOR | 8.03 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
98
- | MoverScore | 55.14 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
99
- | ROUGE_L | 1.14 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
100
 
101
 
102
 
@@ -108,7 +108,7 @@ The following hyperparameters were used during fine-tuning:
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
- - model: vocabtrimmer/mt5-small-trimmed-ko-60000
112
  - max_length: 512
113
  - max_length_output: 32
114
  - epoch: 12
 
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
+ value: 11.1
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
+ value: 26.7
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
+ value: 28.4
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
+ value: 83.43
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
+ value: 82.96
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-ko-60000-koquad-qg`
52
+ This model is fine-tuned version of [ckpts/mt5-small-trimmed-ko-60000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-60000) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
+ - **Language model:** [ckpts/mt5-small-trimmed-ko-60000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-60000)
57
  - **Language:** ko
58
  - **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
 
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
+ | BERTScore | 83.43 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
93
+ | Bleu_1 | 26.36 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
94
+ | Bleu_2 | 19.38 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
95
+ | Bleu_3 | 14.59 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
96
+ | Bleu_4 | 11.1 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
97
+ | METEOR | 28.4 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
98
+ | MoverScore | 82.96 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
99
+ | ROUGE_L | 26.7 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
100
 
101
 
102
 
 
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
+ - model: ckpts/mt5-small-trimmed-ko-60000
112
  - max_length: 512
113
  - max_length_output: 32
114
  - epoch: 12
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_koquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.009961993738175199, "Bleu_2": 0.0039379734207070196, "Bleu_3": 0.0017267170858986116, "Bleu_4": 1.0495181546672459e-07}, "test": {"Bleu_1": 0.01031192723410798, "Bleu_2": 0.004199955042261326, "Bleu_3": 0.0017808728754001065, "Bleu_4": 1.0827942450770742e-07}}
 
1
+ {"validation": {"Bleu_1": 0.2469589305070407, "Bleu_2": 0.17929096175700093, "Bleu_3": 0.13334615487740914, "Bleu_4": 0.10031671449173753}, "test": {"Bleu_1": 0.2610083483385116, "Bleu_2": 0.1916503161097078, "Bleu_3": 0.1442590601750084, "Bleu_4": 0.10976938811488973}}
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.01130355918331207, "Bleu_2": 0.004645214002095576, "Bleu_3": 0.002114598758116934, "Bleu_4": 1.3093675976832167e-07, "METEOR": 0.08186692775854124, "ROUGE_L": 0.012802292147079234, "BERTScore": 0.5947417464164693, "MoverScore": 0.5512115121359509}, "test": {"Bleu_1": 0.01050117655322568, "Bleu_2": 0.004266972959066354, "Bleu_3": 0.00181446225793093, "Bleu_4": 1.1047087368903643e-07, "METEOR": 0.08034635999969227, "ROUGE_L": 0.011407772985091977, "BERTScore": 0.5965719539094829, "MoverScore": 0.551425865352046}}
 
1
+ {"validation": {"Bleu_1": 0.27926709622675794, "Bleu_2": 0.20670723853390727, "Bleu_3": 0.15605306781087946, "Bleu_4": 0.11861208111415848, "METEOR": 0.28907438520972223, "ROUGE_L": 0.27483975174548364, "BERTScore": 0.8266659817641868, "MoverScore": 0.8304209016792409}, "test": {"Bleu_1": 0.26363311845116305, "Bleu_2": 0.19381936568005612, "Bleu_3": 0.1459009993513916, "Bleu_4": 0.1109524699536712, "METEOR": 0.28396979148540924, "ROUGE_L": 0.2669957671152088, "BERTScore": 0.8343427279664819, "MoverScore": 0.8296449373494392}}
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff