asahi417 commited on
Commit
a905160
·
1 Parent(s): 85a3831

commit files to HF hub

Browse files
README.md CHANGED
@@ -33,27 +33,27 @@ model-index:
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
- value: 11.06
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
- value: 26.63
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
- value: 28.43
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
- value: 83.37
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
- value: 82.77
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg`
52
- This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-ko-30000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-30000) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
- - **Language model:** [vocabtrimmer/mt5-small-trimmed-ko-30000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ko-30000)
57
  - **Language:** ko
58
  - **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
@@ -89,14 +89,14 @@ output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
- | BERTScore | 83.37 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
93
- | Bleu_1 | 26.29 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
94
- | Bleu_2 | 19.32 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
95
- | Bleu_3 | 14.55 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
96
- | Bleu_4 | 11.06 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
97
- | METEOR | 28.43 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
98
- | MoverScore | 82.77 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
99
- | ROUGE_L | 26.63 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
100
 
101
 
102
 
@@ -108,7 +108,7 @@ The following hyperparameters were used during fine-tuning:
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
- - model: vocabtrimmer/mt5-small-trimmed-ko-30000
112
  - max_length: 512
113
  - max_length_output: 32
114
  - epoch: 13
 
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
+ value: 10.61
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
+ value: 26.37
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
+ value: 28.36
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
+ value: 83.14
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
+ value: 82.55
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg`
52
+ This model is fine-tuned version of [ckpts/mt5-small-trimmed-ko-30000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-30000) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
+ - **Language model:** [ckpts/mt5-small-trimmed-ko-30000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-30000)
57
  - **Language:** ko
58
  - **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
 
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
+ | BERTScore | 83.14 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
93
+ | Bleu_1 | 25.72 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
94
+ | Bleu_2 | 18.86 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
95
+ | Bleu_3 | 14.11 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
96
+ | Bleu_4 | 10.61 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
97
+ | METEOR | 28.36 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
98
+ | MoverScore | 82.55 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
99
+ | ROUGE_L | 26.37 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
100
 
101
 
102
 
 
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
+ - model: ckpts/mt5-small-trimmed-ko-30000
112
  - max_length: 512
113
  - max_length_output: 32
114
  - epoch: 13
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_koquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.24634663811392846, "Bleu_2": 0.18003534403956303, "Bleu_3": 0.1348033557729109, "Bleu_4": 0.10201480180051613}, "test": {"Bleu_1": 0.2598042196145141, "Bleu_2": 0.19067691304485115, "Bleu_3": 0.14356310518792076, "Bleu_4": 0.1090772998674291}}
 
1
+ {"validation": {"Bleu_1": 0.24730736546708076, "Bleu_2": 0.1805983914991622, "Bleu_3": 0.1351955480215265, "Bleu_4": 0.10231659467122803}, "test": {"Bleu_1": 0.25455346945317786, "Bleu_2": 0.1863540355869153, "Bleu_3": 0.13936333895222536, "Bleu_4": 0.10474075691207706}}
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.2784717119764806, "Bleu_2": 0.20744038499162087, "Bleu_3": 0.15758641388301386, "Bleu_4": 0.12055575253418176, "METEOR": 0.2887190368131312, "ROUGE_L": 0.27546102653085597, "BERTScore": 0.8251674834931064, "MoverScore": 0.8308802744040831}, "test": {"Bleu_1": 0.2628896009321239, "Bleu_2": 0.1931686358632444, "Bleu_3": 0.1455376745882983, "Bleu_4": 0.11059271173945821, "METEOR": 0.2843089201744023, "ROUGE_L": 0.26627586085126886, "BERTScore": 0.8337146293705029, "MoverScore": 0.8276612285261664}}
 
1
+ {"validation": {"Bleu_1": 0.28085530108484147, "Bleu_2": 0.20911529775293766, "Bleu_3": 0.15882842796765106, "Bleu_4": 0.12147030166216247, "METEOR": 0.2915895823700915, "ROUGE_L": 0.2777341588464828, "BERTScore": 0.8262767547406025, "MoverScore": 0.8290985232230139}, "test": {"Bleu_1": 0.2572168231595764, "Bleu_2": 0.188564208617832, "Bleu_3": 0.1411121095117522, "Bleu_4": 0.10605364538839222, "METEOR": 0.2835661755929325, "ROUGE_L": 0.2636899241048791, "BERTScore": 0.8313739765866779, "MoverScore": 0.825547462170264}}
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff