asahi417 commited on
Commit
d488fe8
·
1 Parent(s): 87a6ef0

commit files to HF hub

Browse files
README.md CHANGED
@@ -33,27 +33,27 @@ model-index:
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
- value: 0.0
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
- value: 0.23
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
- value: 0.18
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
- value: 54.4
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
- value: 45.96
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-es-30000-esquad-qg`
52
- This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-es-30000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-30000) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
- - **Language model:** [vocabtrimmer/mt5-small-trimmed-es-30000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-30000)
57
  - **Language:** es
58
  - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
@@ -89,14 +89,14 @@ output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la In
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
- | BERTScore | 54.4 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
93
- | Bleu_1 | 0.26 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
94
- | Bleu_2 | 0 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
95
- | Bleu_3 | 0 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
96
- | Bleu_4 | 0 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
97
- | METEOR | 0.18 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
98
- | MoverScore | 45.96 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
99
- | ROUGE_L | 0.23 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
100
 
101
 
102
 
@@ -108,12 +108,12 @@ The following hyperparameters were used during fine-tuning:
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
- - model: vocabtrimmer/mt5-small-trimmed-es-30000
112
  - max_length: 512
113
  - max_length_output: 32
114
- - epoch: 11
115
  - batch: 16
116
- - lr: 0.0001
117
  - fp16: False
118
  - random_seed: 1
119
  - gradient_accumulation_steps: 4
 
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
+ value: 9.66
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
+ value: 24.04
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
+ value: 22.0
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
+ value: 84.29
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
+ value: 58.96
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-es-30000-esquad-qg`
52
+ This model is fine-tuned version of [ckpts/mt5-small-trimmed-es-30000](https://huggingface.co/ckpts/mt5-small-trimmed-es-30000) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
+ - **Language model:** [ckpts/mt5-small-trimmed-es-30000](https://huggingface.co/ckpts/mt5-small-trimmed-es-30000)
57
  - **Language:** es
58
  - **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
 
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
+ | BERTScore | 84.29 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
93
+ | Bleu_1 | 26.19 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
94
+ | Bleu_2 | 17.87 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
95
+ | Bleu_3 | 12.95 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
96
+ | Bleu_4 | 9.66 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
97
+ | METEOR | 22 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
98
+ | MoverScore | 58.96 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
99
+ | ROUGE_L | 24.04 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
100
 
101
 
102
 
 
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
+ - model: ckpts/mt5-small-trimmed-es-30000
112
  - max_length: 512
113
  - max_length_output: 32
114
+ - epoch: 13
115
  - batch: 16
116
+ - lr: 0.001
117
  - fp16: False
118
  - random_seed: 1
119
  - gradient_accumulation_steps: 4
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_esquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.0022772832902560156, "Bleu_2": 0.00014922086062068844, "Bleu_3": 6.258916877818623e-10, "Bleu_4": 1.325672634974165e-12}, "test": {"Bleu_1": 0.00254662548151177, "Bleu_2": 5.030859451368363e-12, "Bleu_3": 6.5678638411482504e-15, "Bleu_4": 2.4542474154620404e-16}}
 
1
+ {"validation": {"Bleu_1": 0.2549935193689303, "Bleu_2": 0.1723008425778341, "Bleu_3": 0.12450168065967501, "Bleu_4": 0.09266094141629261}, "test": {"Bleu_1": 0.260916337471781, "Bleu_2": 0.1780571157288881, "Bleu_3": 0.12902455010771263, "Bleu_4": 0.09622526338863215}}
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.002495319845164582, "Bleu_2": 0.00016478099316277053, "Bleu_3": 6.929302595420039e-10, "Bleu_4": 1.4695156772976164e-12, "METEOR": 0.001711547515456343, "ROUGE_L": 0.0023221307049144245, "BERTScore": 0.5444269373239002, "MoverScore": 0.4595416350448968}, "test": {"Bleu_1": 0.002558096867100937, "Bleu_2": 5.071278720695698e-12, "Bleu_3": 6.6283013271438106e-15, "Bleu_4": 2.478251564941927e-16, "METEOR": 0.0017628498326727486, "ROUGE_L": 0.0023115855500753634, "BERTScore": 0.5439668217939481, "MoverScore": 0.4595771150647586}}
 
1
+ {"validation": {"Bleu_1": 0.26718637244103205, "Bleu_2": 0.18191503683544474, "Bleu_3": 0.13204136075997108, "Bleu_4": 0.09860574636977182, "METEOR": 0.21577954466612026, "ROUGE_L": 0.24200221541069528, "BERTScore": 0.8366031872464991, "MoverScore": 0.5820990415358654}, "test": {"Bleu_1": 0.2619047619047596, "Bleu_2": 0.1787355305399858, "Bleu_3": 0.1295234230818207, "Bleu_4": 0.09661683256163012, "METEOR": 0.21999782816812127, "ROUGE_L": 0.24039967932044726, "BERTScore": 0.8428789291484892, "MoverScore": 0.5895832000461911}}
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_esquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_esquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff