vnykr commited on
Commit
23575ce
1 Parent(s): 668ab33

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2164.45 +/- 71.97
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86b4c76440bc581bcdf1913ca8d1535ee419087fee722d075e7cc94723901f36
3
+ size 129248
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f226676dcf0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f226676dd80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f226676de10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f226676dea0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f226676df30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f226676dfc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f226676e050>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f226676e0e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f226676e170>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f226676e200>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f226676e290>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f226676e320>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2266778180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1686036390517867603,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJIOyb4gaxu/3z9Pvu6CcD+wbI6/bXKpPzBYHL7v6um9Ppyev6mEXT/P4h8/bpNKP/hM9b7c4jk/lT4eP9Mjljz0XG4/8WRdv3Xn4r7BGOy+dlbhvtDj/72FdLs/A5ADP3m9LD+wT4k+ETuwv/suqz/W7vO+ZAbxvnJhSLyzlVI/poJ5v11SFj8seYE9H62XvtT8z7+qfs+6Jp/MPsBfnz/Crxk+0i/Dv5b/Hz/0sF29dCjJP8zXtTvkPJc/KUb+v7I3Yz/LOEg8tpKZP2vDRz8Csr2/sE+JPhE7sL/7Lqs/OgE8vj3JGb9neUW+yBqVP28vZL8/0ZU/Y6udvr6lf76pvoq/BDrqPgHkTT9c/R0/F1wNPaI24b7hQx4/8ibhPLK6Mj+ywbW/0o8Wv2xpnr4wa/a9r6wIwLFjmD+uNdY+eb0sP7BPiT4k8Dk/mGs/v++azz8PgwO/NaONvRm8oD+03HW/qaECvrPHOb/oEpa/P8+iP442nL1nJD0/3WhNPxdPED/ZCOM/wZG9PiZrCcBXdaa/+CBLP10B9Tx/VEE/77VtvhYy3T/ZgWU7RXAFwHm9LD+wT4k+JPA5P5hrP7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAy4bg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANKYNvgAAAAAxuOq/AAAAAIMqo70AAAAAs+TjPwAAAADzCs49AAAAAJb8AEAAAAAAi2WdvQAAAABKvOC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECDttgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHE3oD0AAAAA2ov+vwAAAAAEExk8AAAAAEVB5z8AAAAA1U/+vQAAAACjVvU/AAAAAEbi1T0AAAAA5jP7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEoYhDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBTFgy+AAAAAIAh/78AAAAAw91gPQAAAAC6AvE/AAAAACpDWz0AAAAAap38PwAAAAD5NqI9AAAAABzy/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi+O82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgTbxvQAAAAAa2t6/AAAAABQWzj0AAAAAzuDsPwAAAAAzHaU9AAAAAEZ92z8AAAAAhWduuwAAAAA8Ffi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJlYarhisn2MAWyUTegDjAF0lEdArYt3I0ZWJnV9lChoBkdAmWuJ+lTFVGgHTegDaAhHQK2OcMDwH7h1fZQoaAZHQJspPYBeXzFoB03oA2gIR0CtkIHMlkYodX2UKGgGR0CZG2jNpudgaAdN6ANoCEdArZIqc7Qsw3V9lChoBkdAm1FtTLns9mgHTegDaAhHQK2afcmjTKF1fZQoaAZHQJuOlj+aScNoB03oA2gIR0CtnHvS2H+IdX2UKGgGR0CfqdWCEpRXaAdN6ANoCEdArZ3KESM983V9lChoBkdAnzL32M85j2gHTegDaAhHQK2e469TP0J1fZQoaAZHQJ3YFutOmBRoB03oA2gIR0CtqAhxo7FLdX2UKGgGR0CdJX4s3AEdaAdN6ANoCEdAraq9GZuyeXV9lChoBkdAn2S5DiOvMmgHTegDaAhHQK2ss/+Kjzt1fZQoaAZHQKBxQCCBf8doB03oA2gIR0CtrniAMDwIdX2UKGgGR0Cb4WMWXTmXaAdN6ANoCEdArbgZrtVrAXV9lChoBkdAoLRISWZ7X2gHTegDaAhHQK26BKTSssB1fZQoaAZHQKAX5/Ue+25oB03oA2gIR0Ctu0diDujRdX2UKGgGR0CgGJbdznzQaAdN6ANoCEdArbxdRNyo43V9lChoBkdAniwV6zE74mgHTegDaAhHQK3Exta6jFh1fZQoaAZHQJYn8sPJ7sxoB03oA2gIR0Ctxw5x7zCldX2UKGgGR0CbbxtdAxBWaAdN6ANoCEdArcjqtvGZNXV9lChoBkdAnDOkmMOwxGgHTegDaAhHQK3KicbR4Ql1fZQoaAZHQJ9tHFYMfA9oB03oA2gIR0Ct1cW+fywwdX2UKGgGR0CgEF0UXYUWaAdN6ANoCEdArdema2F36nV9lChoBkdAoCmzafzz3GgHTegDaAhHQK3Y9X9zfaZ1fZQoaAZHQJ//1GhEjPhoB03oA2gIR0Ct2i4/3WWhdX2UKGgGR0CfYxsD4gzQaAdN6ANoCEdAreK+GwiaAnV9lChoBkdAn1vt+ocaO2gHTegDaAhHQK3kna/RE4N1fZQoaAZHQKBMlO+IuXhoB03oA2gIR0Ct5ipGe+VUdX2UKGgGR0CgJ96lDWsjaAdN6ANoCEdArefehTOxB3V9lChoBkdAoIly/ub7TGgHTegDaAhHQK3zwNo8IRh1fZQoaAZHQJ2dktFrl/9oB03oA2gIR0Ct9ZiQtBfKdX2UKGgGR0CdbQwYLsrvaAdN6ANoCEdArfbkCT2WZHV9lChoBkdAm2cVEJBw/GgHTegDaAhHQK34Ce4Cp3p1fZQoaAZHQJsONGhEjPhoB03oA2gIR0CuALnLRrrPdX2UKGgGR0Cc1HQrMC9zaAdN6ANoCEdArgKfOryUcHV9lChoBkdAnFsKDTSb6WgHTegDaAhHQK4D7NwiqyZ1fZQoaAZHQJah1kUbkwNoB03oA2gIR0CuBRVeKKpDdX2UKGgGR0CcvUwEQoTgaAdN6ANoCEdArhHNEqlP8HV9lChoBkdAmpExLbpNbmgHTegDaAhHQK4Ts4aP0Zp1fZQoaAZHQJzl+UQkHD9oB03oA2gIR0CuFQCe/YapdX2UKGgGR0Cd2e1baAWjaAdN6ANoCEdArhYszVMEinV9lChoBkdAnkB9IClrM2gHTegDaAhHQK4exCyhSLt1fZQoaAZHQJ1V+ews5GVoB03oA2gIR0CuIKiCrcTKdX2UKGgGR0CeDIGahHskaAdN6ANoCEdAriHz6k6903V9lChoBkdAmtPLdrO7hGgHTegDaAhHQK4jFRYRuj11fZQoaAZHQJ1+4nH/951oB03oA2gIR0CuLxIdELH/dX2UKGgGR0Cd9BMnZ00WaAdN6ANoCEdArjGzayrxRXV9lChoBkdAnfwGeYlY2mgHTegDaAhHQK4y9alk6Lh1fZQoaAZHQJ2+bqhUR4BoB03oA2gIR0CuNCG0VrRCdX2UKGgGR0CeYAmxt52RaAdN6ANoCEdArjyqidrftXV9lChoBkdAmdE2jfvWpmgHTegDaAhHQK4+k6unuRd1fZQoaAZHQJ39qrLhaTxoB03oA2gIR0CuP9YdQwbmdX2UKGgGR0CauElKsdT6aAdN6ANoCEdArkDyKYRdyHV9lChoBkdAn1tfNu+AVmgHTegDaAhHQK5MDmV7hNx1fZQoaAZHQJ+8d7a7EpBoB03oA2gIR0CuTx3+2mYTdX2UKGgGR0CfTwCNS619aAdN6ANoCEdArlEZ3qzJIXV9lChoBkdAnkQ9b1RLsmgHTegDaAhHQK5SLpj+aSd1fZQoaAZHQJ9finm7rcFoB03oA2gIR0CuWuXI2fkFdX2UKGgGR0Ce2HTRYzSDaAdN6ANoCEdArly+Wt2cKHV9lChoBkdAoAEuthd+omgHTegDaAhHQK5eAK1og3d1fZQoaAZHQJx4czP8hs9oB03oA2gIR0CuXyiqQzUJdX2UKGgGR0CbDJMzdk8SaAdN6ANoCEdArmk/HJcPfHV9lChoBkdAnJbI7ihnJ2gHTegDaAhHQK5sPfiPyTZ1fZQoaAZHQJ1WMXEZR9BoB03oA2gIR0CublLRrrPddX2UKGgGR0Cc4iCJXQt0aAdN6ANoCEdArnAmOsDGLnV9lChoBkdAn/6Z7ojfN2gHTegDaAhHQK55FO6/Zdx1fZQoaAZHQJ2W3aXa8HxoB03oA2gIR0Cuev+HBUJfdX2UKGgGR0CeFa3lS0jUaAdN6ANoCEdArnxKJ0nw5XV9lChoBkdAnZ6JcgQpWmgHTegDaAhHQK59bueBg/l1fZQoaAZHQJ8wVbcGkepoB03oA2gIR0Cuhonf2saLdX2UKGgGR0CgRUIbOu7paAdN6ANoCEdArok/UF0PpnV9lChoBkdAnvkOFpPAPGgHTegDaAhHQK6LPuLrHEN1fZQoaAZHQJ7wqCXhOxloB03oA2gIR0CujRy3CsOodX2UKGgGR0CgDOXA/LTyaAdN6ANoCEdArpeoqd6LO3V9lChoBkdAn12/aL4ve2gHTegDaAhHQK6adHFPznR1fZQoaAZHQJ9LidJ8OTdoB03oA2gIR0CunGqBEroXdX2UKGgGR0CfAMJyQxN7aAdN6ANoCEdArp5IyylennV9lChoBkdAngUQ6uGKymgHTegDaAhHQK6p98yeqaR1fZQoaAZHQJ2JD420iQloB03oA2gIR0CurPb3XZoPdX2UKGgGR0CcDoT8pCrtaAdN6ANoCEdArq8FinYQKHV9lChoBkdAnaKZjH4oJGgHTegDaAhHQK6wyptrKvF1fZQoaAZHQJ1Mqz7di2FoB03oA2gIR0CuuUWo3rD7dX2UKGgGR0CdGKgPEsJ6aAdN6ANoCEdArrsyxLTQV3V9lChoBkdAnrD2lMyrP2gHTegDaAhHQK68jciW3Sd1fZQoaAZHQJ76O3+dbxFoB03oA2gIR0CuvcXqJMxodX2UKGgGR0CgaqcKG+K1aAdN6ANoCEdArscGB4D9wXV9lChoBkdAoE0aIeo1k2gHTegDaAhHQK7J8M/hVEN1fZQoaAZHQKBk5sY2sJZoB03oA2gIR0CuzASwOe8PdX2UKGgGR0CgEYSeI2wWaAdN6ANoCEdArs31V5rxiHV9lChoBkdAoGid0o0ALmgHTegDaAhHQK7XfCSA6Ml1fZQoaAZHQKDAy9bor4FoB03oA2gIR0Cu2WU1qFh5dX2UKGgGR0CfFiaEBbOeaAdN6ANoCEdArtqoZjx0+3V9lChoBkdAoNGowK0D2mgHTegDaAhHQK7bzgBtDUp1fZQoaAZHQKDCNqZ+hGpoB03oA2gIR0Cu5HTMqz7edX2UKGgGR0Cgb4zU7Sy/aAdN6ANoCEdArucSciGFjHV9lChoBkdAoF54FaB7NWgHTegDaAhHQK7o4UOd5IJ1fZQoaAZHQKA5L0MgEEFoB03oA2gIR0Cu6qIyj59FdX2UKGgGR0Cdk2lvIfbLaAdN6ANoCEdArvVpczImxHV9lChoBkdAoGe5EBsAN2gHTegDaAhHQK73USRr8BN1fZQoaAZHQKD5qSOinHhoB03oA2gIR0Cu+K4keIVNdX2UKGgGR0ChS+6ESM99aAdN6ANoCEdArvndivxH5XVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27b724bf7cad73f034b7bd8b12959d286c4813123f8ae77d4791d6bc43810a39
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a6a48baaacd837d75ac053b6869cb0ee120744d2b7fcc4249467a48d5068662
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f226676dcf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f226676dd80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f226676de10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f226676dea0>", "_build": "<function ActorCriticPolicy._build at 0x7f226676df30>", "forward": "<function ActorCriticPolicy.forward at 0x7f226676dfc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f226676e050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f226676e0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f226676e170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f226676e200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f226676e290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f226676e320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2266778180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686036390517867603, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJIOyb4gaxu/3z9Pvu6CcD+wbI6/bXKpPzBYHL7v6um9Ppyev6mEXT/P4h8/bpNKP/hM9b7c4jk/lT4eP9Mjljz0XG4/8WRdv3Xn4r7BGOy+dlbhvtDj/72FdLs/A5ADP3m9LD+wT4k+ETuwv/suqz/W7vO+ZAbxvnJhSLyzlVI/poJ5v11SFj8seYE9H62XvtT8z7+qfs+6Jp/MPsBfnz/Crxk+0i/Dv5b/Hz/0sF29dCjJP8zXtTvkPJc/KUb+v7I3Yz/LOEg8tpKZP2vDRz8Csr2/sE+JPhE7sL/7Lqs/OgE8vj3JGb9neUW+yBqVP28vZL8/0ZU/Y6udvr6lf76pvoq/BDrqPgHkTT9c/R0/F1wNPaI24b7hQx4/8ibhPLK6Mj+ywbW/0o8Wv2xpnr4wa/a9r6wIwLFjmD+uNdY+eb0sP7BPiT4k8Dk/mGs/v++azz8PgwO/NaONvRm8oD+03HW/qaECvrPHOb/oEpa/P8+iP442nL1nJD0/3WhNPxdPED/ZCOM/wZG9PiZrCcBXdaa/+CBLP10B9Tx/VEE/77VtvhYy3T/ZgWU7RXAFwHm9LD+wT4k+JPA5P5hrP7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAy4bg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANKYNvgAAAAAxuOq/AAAAAIMqo70AAAAAs+TjPwAAAADzCs49AAAAAJb8AEAAAAAAi2WdvQAAAABKvOC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECDttgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHE3oD0AAAAA2ov+vwAAAAAEExk8AAAAAEVB5z8AAAAA1U/+vQAAAACjVvU/AAAAAEbi1T0AAAAA5jP7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEoYhDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBTFgy+AAAAAIAh/78AAAAAw91gPQAAAAC6AvE/AAAAACpDWz0AAAAAap38PwAAAAD5NqI9AAAAABzy/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABi+O82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgTbxvQAAAAAa2t6/AAAAABQWzj0AAAAAzuDsPwAAAAAzHaU9AAAAAEZ92z8AAAAAhWduuwAAAAA8Ffi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJlYarhisn2MAWyUTegDjAF0lEdArYt3I0ZWJnV9lChoBkdAmWuJ+lTFVGgHTegDaAhHQK2OcMDwH7h1fZQoaAZHQJspPYBeXzFoB03oA2gIR0CtkIHMlkYodX2UKGgGR0CZG2jNpudgaAdN6ANoCEdArZIqc7Qsw3V9lChoBkdAm1FtTLns9mgHTegDaAhHQK2afcmjTKF1fZQoaAZHQJuOlj+aScNoB03oA2gIR0CtnHvS2H+IdX2UKGgGR0CfqdWCEpRXaAdN6ANoCEdArZ3KESM983V9lChoBkdAnzL32M85j2gHTegDaAhHQK2e469TP0J1fZQoaAZHQJ3YFutOmBRoB03oA2gIR0CtqAhxo7FLdX2UKGgGR0CdJX4s3AEdaAdN6ANoCEdAraq9GZuyeXV9lChoBkdAn2S5DiOvMmgHTegDaAhHQK2ss/+Kjzt1fZQoaAZHQKBxQCCBf8doB03oA2gIR0CtrniAMDwIdX2UKGgGR0Cb4WMWXTmXaAdN6ANoCEdArbgZrtVrAXV9lChoBkdAoLRISWZ7X2gHTegDaAhHQK26BKTSssB1fZQoaAZHQKAX5/Ue+25oB03oA2gIR0Ctu0diDujRdX2UKGgGR0CgGJbdznzQaAdN6ANoCEdArbxdRNyo43V9lChoBkdAniwV6zE74mgHTegDaAhHQK3Exta6jFh1fZQoaAZHQJYn8sPJ7sxoB03oA2gIR0Ctxw5x7zCldX2UKGgGR0CbbxtdAxBWaAdN6ANoCEdArcjqtvGZNXV9lChoBkdAnDOkmMOwxGgHTegDaAhHQK3KicbR4Ql1fZQoaAZHQJ9tHFYMfA9oB03oA2gIR0Ct1cW+fywwdX2UKGgGR0CgEF0UXYUWaAdN6ANoCEdArdema2F36nV9lChoBkdAoCmzafzz3GgHTegDaAhHQK3Y9X9zfaZ1fZQoaAZHQJ//1GhEjPhoB03oA2gIR0Ct2i4/3WWhdX2UKGgGR0CfYxsD4gzQaAdN6ANoCEdAreK+GwiaAnV9lChoBkdAn1vt+ocaO2gHTegDaAhHQK3kna/RE4N1fZQoaAZHQKBMlO+IuXhoB03oA2gIR0Ct5ipGe+VUdX2UKGgGR0CgJ96lDWsjaAdN6ANoCEdArefehTOxB3V9lChoBkdAoIly/ub7TGgHTegDaAhHQK3zwNo8IRh1fZQoaAZHQJ2dktFrl/9oB03oA2gIR0Ct9ZiQtBfKdX2UKGgGR0CdbQwYLsrvaAdN6ANoCEdArfbkCT2WZHV9lChoBkdAm2cVEJBw/GgHTegDaAhHQK34Ce4Cp3p1fZQoaAZHQJsONGhEjPhoB03oA2gIR0CuALnLRrrPdX2UKGgGR0Cc1HQrMC9zaAdN6ANoCEdArgKfOryUcHV9lChoBkdAnFsKDTSb6WgHTegDaAhHQK4D7NwiqyZ1fZQoaAZHQJah1kUbkwNoB03oA2gIR0CuBRVeKKpDdX2UKGgGR0CcvUwEQoTgaAdN6ANoCEdArhHNEqlP8HV9lChoBkdAmpExLbpNbmgHTegDaAhHQK4Ts4aP0Zp1fZQoaAZHQJzl+UQkHD9oB03oA2gIR0CuFQCe/YapdX2UKGgGR0Cd2e1baAWjaAdN6ANoCEdArhYszVMEinV9lChoBkdAnkB9IClrM2gHTegDaAhHQK4exCyhSLt1fZQoaAZHQJ1V+ews5GVoB03oA2gIR0CuIKiCrcTKdX2UKGgGR0CeDIGahHskaAdN6ANoCEdAriHz6k6903V9lChoBkdAmtPLdrO7hGgHTegDaAhHQK4jFRYRuj11fZQoaAZHQJ1+4nH/951oB03oA2gIR0CuLxIdELH/dX2UKGgGR0Cd9BMnZ00WaAdN6ANoCEdArjGzayrxRXV9lChoBkdAnfwGeYlY2mgHTegDaAhHQK4y9alk6Lh1fZQoaAZHQJ2+bqhUR4BoB03oA2gIR0CuNCG0VrRCdX2UKGgGR0CeYAmxt52RaAdN6ANoCEdArjyqidrftXV9lChoBkdAmdE2jfvWpmgHTegDaAhHQK4+k6unuRd1fZQoaAZHQJ39qrLhaTxoB03oA2gIR0CuP9YdQwbmdX2UKGgGR0CauElKsdT6aAdN6ANoCEdArkDyKYRdyHV9lChoBkdAn1tfNu+AVmgHTegDaAhHQK5MDmV7hNx1fZQoaAZHQJ+8d7a7EpBoB03oA2gIR0CuTx3+2mYTdX2UKGgGR0CfTwCNS619aAdN6ANoCEdArlEZ3qzJIXV9lChoBkdAnkQ9b1RLsmgHTegDaAhHQK5SLpj+aSd1fZQoaAZHQJ9finm7rcFoB03oA2gIR0CuWuXI2fkFdX2UKGgGR0Ce2HTRYzSDaAdN6ANoCEdArly+Wt2cKHV9lChoBkdAoAEuthd+omgHTegDaAhHQK5eAK1og3d1fZQoaAZHQJx4czP8hs9oB03oA2gIR0CuXyiqQzUJdX2UKGgGR0CbDJMzdk8SaAdN6ANoCEdArmk/HJcPfHV9lChoBkdAnJbI7ihnJ2gHTegDaAhHQK5sPfiPyTZ1fZQoaAZHQJ1WMXEZR9BoB03oA2gIR0CublLRrrPddX2UKGgGR0Cc4iCJXQt0aAdN6ANoCEdArnAmOsDGLnV9lChoBkdAn/6Z7ojfN2gHTegDaAhHQK55FO6/Zdx1fZQoaAZHQJ2W3aXa8HxoB03oA2gIR0Cuev+HBUJfdX2UKGgGR0CeFa3lS0jUaAdN6ANoCEdArnxKJ0nw5XV9lChoBkdAnZ6JcgQpWmgHTegDaAhHQK59bueBg/l1fZQoaAZHQJ8wVbcGkepoB03oA2gIR0Cuhonf2saLdX2UKGgGR0CgRUIbOu7paAdN6ANoCEdArok/UF0PpnV9lChoBkdAnvkOFpPAPGgHTegDaAhHQK6LPuLrHEN1fZQoaAZHQJ7wqCXhOxloB03oA2gIR0CujRy3CsOodX2UKGgGR0CgDOXA/LTyaAdN6ANoCEdArpeoqd6LO3V9lChoBkdAn12/aL4ve2gHTegDaAhHQK6adHFPznR1fZQoaAZHQJ9LidJ8OTdoB03oA2gIR0CunGqBEroXdX2UKGgGR0CfAMJyQxN7aAdN6ANoCEdArp5IyylennV9lChoBkdAngUQ6uGKymgHTegDaAhHQK6p98yeqaR1fZQoaAZHQJ2JD420iQloB03oA2gIR0CurPb3XZoPdX2UKGgGR0CcDoT8pCrtaAdN6ANoCEdArq8FinYQKHV9lChoBkdAnaKZjH4oJGgHTegDaAhHQK6wyptrKvF1fZQoaAZHQJ1Mqz7di2FoB03oA2gIR0CuuUWo3rD7dX2UKGgGR0CdGKgPEsJ6aAdN6ANoCEdArrsyxLTQV3V9lChoBkdAnrD2lMyrP2gHTegDaAhHQK68jciW3Sd1fZQoaAZHQJ76O3+dbxFoB03oA2gIR0CuvcXqJMxodX2UKGgGR0CgaqcKG+K1aAdN6ANoCEdArscGB4D9wXV9lChoBkdAoE0aIeo1k2gHTegDaAhHQK7J8M/hVEN1fZQoaAZHQKBk5sY2sJZoB03oA2gIR0CuzASwOe8PdX2UKGgGR0CgEYSeI2wWaAdN6ANoCEdArs31V5rxiHV9lChoBkdAoGid0o0ALmgHTegDaAhHQK7XfCSA6Ml1fZQoaAZHQKDAy9bor4FoB03oA2gIR0Cu2WU1qFh5dX2UKGgGR0CfFiaEBbOeaAdN6ANoCEdArtqoZjx0+3V9lChoBkdAoNGowK0D2mgHTegDaAhHQK7bzgBtDUp1fZQoaAZHQKDCNqZ+hGpoB03oA2gIR0Cu5HTMqz7edX2UKGgGR0Cgb4zU7Sy/aAdN6ANoCEdArucSciGFjHV9lChoBkdAoF54FaB7NWgHTegDaAhHQK7o4UOd5IJ1fZQoaAZHQKA5L0MgEEFoB03oA2gIR0Cu6qIyj59FdX2UKGgGR0Cdk2lvIfbLaAdN6ANoCEdArvVpczImxHV9lChoBkdAoGe5EBsAN2gHTegDaAhHQK73USRr8BN1fZQoaAZHQKD5qSOinHhoB03oA2gIR0Cu+K4keIVNdX2UKGgGR0ChS+6ESM99aAdN6ANoCEdArvndivxH5XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad7ee15109e1e57fae12c10407237a1ab19cb343d4a7280e8d82b6377e496ea3
3
+ size 1264173
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2164.4463283216583, "std_reward": 71.97407080212542, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-06T08:48:57.949818"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b00bad13bc8a8c428607409476244a994bae7bff87df1e6e9400e9a121ba7e9b
3
+ size 2176