vmattoso commited on
Commit
7f9805d
·
verified ·
1 Parent(s): 238be95

... This is my first commit using the python code and the SKOPS to make this process ...

Browse files
Files changed (4) hide show
  1. README.md +234 -0
  2. config.json +83 -0
  3. confusion_matrix.png +0 -0
  4. model_main_v2_hf.joblib +3 -0
README.md ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-classification
8
+ model_format: pickle
9
+ model_file: model_main_v2_hf.joblib
10
+ widget:
11
+ - structuredData:
12
+ alcohol:
13
+ - 10.8
14
+ - 9.6
15
+ - 11.7
16
+ chlorides:
17
+ - 0.171
18
+ - 0.095
19
+ - 0.063
20
+ citric acid:
21
+ - 0.43
22
+ - 0.0
23
+ - 0.33
24
+ density:
25
+ - 0.9982
26
+ - 0.99854
27
+ - 0.99516
28
+ fixed acidity:
29
+ - 10.8
30
+ - 8.1
31
+ - 9.1
32
+ free sulfur dioxide:
33
+ - 27.0
34
+ - 5.0
35
+ - 13.0
36
+ pH:
37
+ - 3.17
38
+ - 3.36
39
+ - 3.26
40
+ residual sugar:
41
+ - 2.1
42
+ - 4.1
43
+ - 2.05
44
+ sulphates:
45
+ - 0.76
46
+ - 0.53
47
+ - 0.84
48
+ total sulfur dioxide:
49
+ - 66.0
50
+ - 14.0
51
+ - 27.0
52
+ volatile acidity:
53
+ - 0.47
54
+ - 0.82
55
+ - 0.29
56
+ ---
57
+
58
+ # Model description
59
+
60
+ This is the best model
61
+
62
+ ## Intended uses & limitations
63
+
64
+ [More Information Needed]
65
+
66
+ ## Training Procedure
67
+
68
+ [More Information Needed]
69
+
70
+ ### Hyperparameters
71
+
72
+ <details>
73
+ <summary> Click to expand </summary>
74
+
75
+ | Hyperparameter | Value |
76
+ |--------------------------|---------|
77
+ | bootstrap | True |
78
+ | ccp_alpha | 0.0 |
79
+ | class_weight | |
80
+ | criterion | gini |
81
+ | max_depth | |
82
+ | max_features | sqrt |
83
+ | max_leaf_nodes | |
84
+ | max_samples | |
85
+ | min_impurity_decrease | 0.0 |
86
+ | min_samples_leaf | 1 |
87
+ | min_samples_split | 2 |
88
+ | min_weight_fraction_leaf | 0.0 |
89
+ | monotonic_cst | |
90
+ | n_estimators | 100 |
91
+ | n_jobs | |
92
+ | oob_score | False |
93
+ | random_state | 0 |
94
+ | verbose | 0 |
95
+ | warm_start | False |
96
+
97
+ </details>
98
+
99
+ ### Model Plot
100
+
101
+ <style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
102
+ }#sk-container-id-1 {color: var(--sklearn-color-text);
103
+ }#sk-container-id-1 pre {padding: 0;
104
+ }#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
105
+ }#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
106
+ }#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
107
+ }#sk-container-id-1 div.sk-text-repr-fallback {display: none;
108
+ }div.sk-parallel-item,
109
+ div.sk-serial,
110
+ div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
111
+ }/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
112
+ }#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
113
+ }#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
114
+ }#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
115
+ }#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
116
+ }#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
117
+ }/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
118
+ }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
119
+ clickable and can be expanded/collapsed.
120
+ - Pipeline and ColumnTransformer use this feature and define the default style
121
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
122
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
123
+ }/* Toggleable label */
124
+ #sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
125
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
126
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
127
+ }/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
128
+ }#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
129
+ }#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
130
+ }#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
131
+ }#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
132
+ }#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
133
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
134
+ }#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
135
+ }/* Estimator-specific style *//* Colorize estimator box */
136
+ #sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
137
+ }#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
138
+ }#sk-container-id-1 div.sk-label label.sk-toggleable__label,
139
+ #sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
140
+ }/* On hover, darken the color of the background */
141
+ #sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
142
+ }/* Label box, darken color on hover, fitted */
143
+ #sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
144
+ }/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
145
+ }#sk-container-id-1 div.sk-label-container {text-align: center;
146
+ }/* Estimator-specific */
147
+ #sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
148
+ }#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
149
+ }/* on hover */
150
+ #sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
151
+ }#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
152
+ }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
153
+ a:link.sk-estimator-doc-link,
154
+ a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
155
+ }.sk-estimator-doc-link.fitted,
156
+ a:link.sk-estimator-doc-link.fitted,
157
+ a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
158
+ }/* On hover */
159
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
160
+ .sk-estimator-doc-link:hover,
161
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
162
+ .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
163
+ }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
164
+ .sk-estimator-doc-link.fitted:hover,
165
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
166
+ .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
167
+ }/* Span, style for the box shown on hovering the info icon */
168
+ .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
169
+ }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
170
+ }.sk-estimator-doc-link:hover span {display: block;
171
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
172
+ }#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
173
+ }/* On hover */
174
+ #sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
175
+ }#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
176
+ }
177
+ </style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>RandomForestClassifier(random_state=0)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;RandomForestClassifier<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.ensemble.RandomForestClassifier.html">?<span>Documentation for RandomForestClassifier</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>RandomForestClassifier(random_state=0)</pre></div> </div></div></div></div>
178
+
179
+ ## Evaluation Results
180
+
181
+ | Metric | Value |
182
+ |----------|---------|
183
+ | accuracy | 0.7125 |
184
+
185
+ # How to Get Started with the Model
186
+
187
+ [More Information Needed]
188
+
189
+ # Model Card Authors
190
+
191
+ This model card is written by following authors:
192
+
193
+ [More Information Needed]
194
+
195
+ # Model Card Contact
196
+
197
+ You can contact the model card authors through following channels:
198
+ [More Information Needed]
199
+
200
+ # Citation
201
+
202
+ Below you can find information related to citation.
203
+
204
+ **BibTeX:**
205
+ ```
206
+ [More Information Needed]
207
+ ```
208
+
209
+ # citation_bibtex
210
+
211
+ bibtex
212
+ @inproceedings{...,year={2020}}
213
+
214
+ # get_started_code
215
+
216
+ import pickle
217
+ with open(dtc_pkl_filename, 'rb') as file:
218
+ clf = pickle.load(file)
219
+
220
+ # model_card_authors
221
+
222
+ skops_user
223
+
224
+ # limitations
225
+
226
+ This model is not ready to be used in production.
227
+
228
+ # model_description
229
+
230
+ This is a RandomForest Model model trained on wine classification dataset.
231
+
232
+ # confusion_matrix
233
+
234
+ ![confusion_matrix](confusion_matrix.png)
config.json ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "fixed acidity",
5
+ "volatile acidity",
6
+ "citric acid",
7
+ "residual sugar",
8
+ "chlorides",
9
+ "free sulfur dioxide",
10
+ "total sulfur dioxide",
11
+ "density",
12
+ "pH",
13
+ "sulphates",
14
+ "alcohol"
15
+ ],
16
+ "environment": [
17
+ "scikit-learn=1.4.1.post1"
18
+ ],
19
+ "example_input": {
20
+ "alcohol": [
21
+ 10.8,
22
+ 9.6,
23
+ 11.7
24
+ ],
25
+ "chlorides": [
26
+ 0.171,
27
+ 0.095,
28
+ 0.063
29
+ ],
30
+ "citric acid": [
31
+ 0.43,
32
+ 0.0,
33
+ 0.33
34
+ ],
35
+ "density": [
36
+ 0.9982,
37
+ 0.99854,
38
+ 0.99516
39
+ ],
40
+ "fixed acidity": [
41
+ 10.8,
42
+ 8.1,
43
+ 9.1
44
+ ],
45
+ "free sulfur dioxide": [
46
+ 27.0,
47
+ 5.0,
48
+ 13.0
49
+ ],
50
+ "pH": [
51
+ 3.17,
52
+ 3.36,
53
+ 3.26
54
+ ],
55
+ "residual sugar": [
56
+ 2.1,
57
+ 4.1,
58
+ 2.05
59
+ ],
60
+ "sulphates": [
61
+ 0.76,
62
+ 0.53,
63
+ 0.84
64
+ ],
65
+ "total sulfur dioxide": [
66
+ 66.0,
67
+ 14.0,
68
+ 27.0
69
+ ],
70
+ "volatile acidity": [
71
+ 0.47,
72
+ 0.82,
73
+ 0.29
74
+ ]
75
+ },
76
+ "model": {
77
+ "file": "model_main_v2_hf.joblib"
78
+ },
79
+ "model_format": "pickle",
80
+ "task": "tabular-classification",
81
+ "use_intelex": false
82
+ }
83
+ }
confusion_matrix.png ADDED
model_main_v2_hf.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6ec07d98d0433aa265cab300e756332599cf5cc5728942cc444564a2e92e0fb
3
+ size 6363273