Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,74 @@
|
|
1 |
---
|
2 |
license: cc0-1.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc0-1.0
|
3 |
---
|
4 |
+
|
5 |
+
**Note:** Due to nature of toxic comments, data and code contain explicit language.
|
6 |
+
|
7 |
+
Data is from kaggle, the *Toxic Comment Classification Challenge*
|
8 |
+
<br>
|
9 |
+
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data?select=train.csv.zip
|
10 |
+
|
11 |
+
Dataset used for training: https://huggingface.co/datasets/vluz/Tox
|
12 |
+
|
13 |
+
Trained over 30 epoch in a runpod
|
14 |
+
|
15 |
+
### 🤗 Running demo here:
|
16 |
+
https://huggingface.co/spaces/vluz/Tox
|
17 |
+
|
18 |
+
<hr>
|
19 |
+
|
20 |
+
Code requires pandas, tensorflow, and streamlit. All can be installed via `pip`.
|
21 |
+
|
22 |
+
```python
|
23 |
+
import os
|
24 |
+
import pickle
|
25 |
+
import streamlit as st
|
26 |
+
import tensorflow as tf
|
27 |
+
from tensorflow.keras.layers import TextVectorization
|
28 |
+
|
29 |
+
|
30 |
+
@st.cache_resource
|
31 |
+
def load_model():
|
32 |
+
model = tf.keras.models.load_model(os.path.join("model", "toxmodel.keras"))
|
33 |
+
return model
|
34 |
+
|
35 |
+
|
36 |
+
@st.cache_resource
|
37 |
+
def load_vectorizer():
|
38 |
+
from_disk = pickle.load(open(os.path.join("model", "vectorizer.pkl"), "rb"))
|
39 |
+
new_v = TextVectorization.from_config(from_disk['config'])
|
40 |
+
new_v.adapt(tf.data.Dataset.from_tensor_slices(["xyz"])) # Keras bug
|
41 |
+
new_v.set_weights(from_disk['weights'])
|
42 |
+
return new_v
|
43 |
+
|
44 |
+
|
45 |
+
st.title("Toxic Comment Test")
|
46 |
+
st.divider()
|
47 |
+
model = load_model()
|
48 |
+
vectorizer = load_vectorizer()
|
49 |
+
input_text = st.text_area("Comment:", "I love you man, but fuck you!", height=150)
|
50 |
+
if st.button("Test"):
|
51 |
+
with st.spinner("Testing..."):
|
52 |
+
inputv = vectorizer([input_text])
|
53 |
+
output = model.predict(inputv)
|
54 |
+
res = (output > 0.5)
|
55 |
+
st.write(["toxic","severe toxic","obscene","threat","insult","identity hate"], res)
|
56 |
+
st.write(output)
|
57 |
+
```
|
58 |
+
|
59 |
+
|
60 |
+
Put `toxmodel.keras` and `vectorizer.pkl` into the `model` dir.
|
61 |
+
|
62 |
+
Then do:
|
63 |
+
```
|
64 |
+
stramlit run toxtest.py
|
65 |
+
```
|
66 |
+
|
67 |
+
Expected results from default prompt are positive for 0 and 2
|
68 |
+
|
69 |
+
<hr>
|
70 |
+
|
71 |
+
Full code can be found here:
|
72 |
+
<br>
|
73 |
+
https://github.com/vluz/ToxTest/
|
74 |
+
<br>
|