add language model
Browse files- alphabet.json +1 -0
- build_lm_processor.ipynb +200 -0
- language_model/attrs.json +1 -0
- language_model/km_wiki_ngram.arpa +3 -0
- language_model/unigrams.txt +0 -0
alphabet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"labels": [" ", "\u1780", "\u1781", "\u1782", "\u1783", "\u1784", "\u1785", "\u1786", "\u1787", "\u1788", "\u1789", "\u178a", "\u178b", "\u178c", "\u178d", "\u178e", "\u178f", "\u1790", "\u1791", "\u1792", "\u1793", "\u1794", "\u1795", "\u1796", "\u1797", "\u1798", "\u1799", "\u179a", "\u179b", "\u179c", "\u179f", "\u17a0", "\u17a1", "\u17a2", "\u17a5", "\u17a7", "\u17aa", "\u17ab", "\u17ac", "\u17ad", "\u17ae", "\u17af", "\u17b1", "\u17b6", "\u17b7", "\u17b8", "\u17b9", "\u17ba", "\u17bb", "\u17bc", "\u17bd", "\u17be", "\u17bf", "\u17c0", "\u17c1", "\u17c2", "\u17c3", "\u17c4", "\u17c5", "\u17c6", "\u17c7", "\u17c8", "\u17c9", "\u17ca", "\u17cb", "\u17cc", "\u17cd", "\u17ce", "\u17cf", "\u17d0", "\u17d2", "\u2047", "", "<s>", "</s>"], "is_bpe": false}
|
build_lm_processor.ipynb
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "5393aa33",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, AutoModelForCTC, Wav2Vec2Processor, AutoProcessor, Wav2Vec2ProcessorWithLM\n",
|
11 |
+
"from datasets import load_dataset, load_metric, Audio\n",
|
12 |
+
"from pyctcdecode import build_ctcdecoder\n",
|
13 |
+
"from pydub import AudioSegment\n",
|
14 |
+
"from pydub.playback import play\n",
|
15 |
+
"\n",
|
16 |
+
"import numpy as np\n",
|
17 |
+
"import torch\n",
|
18 |
+
"import kenlm\n",
|
19 |
+
"import pandas as pd\n",
|
20 |
+
"import random\n",
|
21 |
+
"import soundfile as sf\n",
|
22 |
+
"from tqdm.auto import tqdm"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 2,
|
28 |
+
"id": "2d34d3b8",
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"# KENLM_MODEL_LOC = '/workspace/xls-r-300m-km/data/km_text_word_unigram.arpa'\n",
|
33 |
+
"KENLM_MODEL_LOC = '/workspace/xls-r-300m-km/data/km_wiki_ngram.arpa'"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 3,
|
39 |
+
"id": "f0354cb2",
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [
|
42 |
+
{
|
43 |
+
"name": "stderr",
|
44 |
+
"output_type": "stream",
|
45 |
+
"text": [
|
46 |
+
"Loading the LM will be faster if you build a binary file.\n",
|
47 |
+
"Reading /workspace/xls-r-300m-km/vitouphy/xls-r-300m-km/language_model/km_text.arpa\n",
|
48 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
49 |
+
"Only 81 unigrams passed as vocabulary. Is this small or artificial data?\n",
|
50 |
+
"****************************************************************************************************\n"
|
51 |
+
]
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"source": [
|
55 |
+
"processor = AutoProcessor.from_pretrained(\"vitouphy/xls-r-300m-km\")"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 4,
|
61 |
+
"id": "109f28e9",
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [
|
64 |
+
{
|
65 |
+
"name": "stdout",
|
66 |
+
"output_type": "stream",
|
67 |
+
"text": [
|
68 |
+
"{'|': 0, 'แ': 1, 'แ': 2, 'แ': 3, 'แ': 4, 'แ': 5, 'แ
': 6, 'แ': 7, 'แ': 8, 'แ': 9, 'แ': 10, 'แ': 11, 'แ': 12, 'แ': 13, 'แ': 14, 'แ': 15, 'แ': 16, 'แ': 17, 'แ': 18, 'แ': 19, 'แ': 20, 'แ': 21, 'แ': 22, 'แ': 23, 'แ': 24, 'แ': 25, 'แ': 26, 'แ': 27, 'แ': 28, 'แ': 29, 'แ': 30, 'แ ': 31, 'แก': 32, 'แข': 33, 'แฅ': 34, 'แง': 35, 'แช': 36, 'แซ': 37, 'แฌ': 38, 'แญ': 39, 'แฎ': 40, 'แฏ': 41, 'แฑ': 42, 'แถ': 43, 'แท': 44, 'แธ': 45, 'แน': 46, 'แบ': 47, 'แป': 48, 'แผ': 49, 'แฝ': 50, 'แพ': 51, 'แฟ': 52, 'แ': 53, 'แ': 54, 'แ': 55, 'แ': 56, 'แ': 57, 'แ
': 58, 'แ': 59, 'แ': 60, 'แ': 61, 'แ': 62, 'แ': 63, 'แ': 64, 'แ': 65, 'แ': 66, 'แ': 67, 'แ': 68, 'แ': 69, 'แ': 70, '[unk]': 71, '[pad]': 72, '<s>': 73, '</s>': 74}\n"
|
69 |
+
]
|
70 |
+
}
|
71 |
+
],
|
72 |
+
"source": [
|
73 |
+
"vocab_dict = processor.tokenizer.get_vocab()\n",
|
74 |
+
"sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}\n",
|
75 |
+
"print(sorted_vocab_dict)"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 5,
|
81 |
+
"id": "300cec39",
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [
|
84 |
+
{
|
85 |
+
"name": "stderr",
|
86 |
+
"output_type": "stream",
|
87 |
+
"text": [
|
88 |
+
"Loading the LM will be faster if you build a binary file.\n",
|
89 |
+
"Reading /workspace/xls-r-300m-km/data/km_wiki_ngram.arpa\n",
|
90 |
+
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
91 |
+
"Found entries of length > 1 in alphabet. This is unusual unless style is BPE, but the alphabet was not recognized as BPE type. Is this correct?\n",
|
92 |
+
"****************************************************************************************************\n"
|
93 |
+
]
|
94 |
+
}
|
95 |
+
],
|
96 |
+
"source": [
|
97 |
+
"decoder = build_ctcdecoder(\n",
|
98 |
+
" labels=list(sorted_vocab_dict.keys()),\n",
|
99 |
+
" kenlm_model_path=KENLM_MODEL_LOC,\n",
|
100 |
+
")"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 8,
|
106 |
+
"id": "27dd8427",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"processor_with_lm = Wav2Vec2ProcessorWithLM(\n",
|
111 |
+
" feature_extractor=processor.feature_extractor,\n",
|
112 |
+
" tokenizer=processor.tokenizer,\n",
|
113 |
+
" decoder=decoder\n",
|
114 |
+
")"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 9,
|
120 |
+
"id": "94eb248e",
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"processor_with_lm.save_pretrained(\".\")"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "markdown",
|
129 |
+
"id": "8f9b3dcc",
|
130 |
+
"metadata": {},
|
131 |
+
"source": [
|
132 |
+
"## Save Model"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"cell_type": "code",
|
137 |
+
"execution_count": 9,
|
138 |
+
"id": "8b584690",
|
139 |
+
"metadata": {},
|
140 |
+
"outputs": [
|
141 |
+
{
|
142 |
+
"data": {
|
143 |
+
"application/vnd.jupyter.widget-view+json": {
|
144 |
+
"model_id": "bc5bf68946064e97b869d44b02e7af19",
|
145 |
+
"version_major": 2,
|
146 |
+
"version_minor": 0
|
147 |
+
},
|
148 |
+
"text/plain": [
|
149 |
+
"Downloading: 0%| | 0.00/1.18G [00:00<?, ?B/s]"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
"metadata": {},
|
153 |
+
"output_type": "display_data"
|
154 |
+
}
|
155 |
+
],
|
156 |
+
"source": [
|
157 |
+
"model = AutoModelForCTC.from_pretrained(\"vitouphy/xls-r-300m-km\")"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"execution_count": 12,
|
163 |
+
"id": "3712c030",
|
164 |
+
"metadata": {},
|
165 |
+
"outputs": [],
|
166 |
+
"source": [
|
167 |
+
"model.save_pretrained('.')"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "code",
|
172 |
+
"execution_count": null,
|
173 |
+
"id": "b5d8de20",
|
174 |
+
"metadata": {},
|
175 |
+
"outputs": [],
|
176 |
+
"source": []
|
177 |
+
}
|
178 |
+
],
|
179 |
+
"metadata": {
|
180 |
+
"kernelspec": {
|
181 |
+
"display_name": "Python 3 (ipykernel)",
|
182 |
+
"language": "python",
|
183 |
+
"name": "python3"
|
184 |
+
},
|
185 |
+
"language_info": {
|
186 |
+
"codemirror_mode": {
|
187 |
+
"name": "ipython",
|
188 |
+
"version": 3
|
189 |
+
},
|
190 |
+
"file_extension": ".py",
|
191 |
+
"mimetype": "text/x-python",
|
192 |
+
"name": "python",
|
193 |
+
"nbconvert_exporter": "python",
|
194 |
+
"pygments_lexer": "ipython3",
|
195 |
+
"version": "3.8.8"
|
196 |
+
}
|
197 |
+
},
|
198 |
+
"nbformat": 4,
|
199 |
+
"nbformat_minor": 5
|
200 |
+
}
|
language_model/attrs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language_model/km_wiki_ngram.arpa
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4eae7d94d04e95668df7306edf35e21f4bbab2a73c736b921e531cd25cde6d0
|
3 |
+
size 109085039
|
language_model/unigrams.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|