vitorhgomes
commited on
Commit
·
f941a24
1
Parent(s):
bea73fa
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -5.06 +/- 4.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bd02ac75e49c85aee4e1d61972a483537b0af51549736aa33bbeb89acb5d772
|
3 |
+
size 108107
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f13c8848ca0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f13c884b0f0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676417679279774033,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhNzFPkaSsLwLbRE/hNzFPkaSsLwLbRE/hNzFPkaSsLwLbRE/hNzFPkaSsLwLbRE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvtKXP0i2wD9663A/A6zdvltbkr+MaN0/hPikPil00T4fBWk+nZdFv1LVDb/XWNg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACE3MU+RpKwvAttET/7VRs8jiQ5uQyE/juE3MU+RpKwvAttET/7VRs8jiQ5uQyE/juE3MU+RpKwvAttET/7VRs8jiQ5uQyE/juE3MU+RpKwvAttET/7VRs8jiQ5uQyE/juUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.38644803 -0.02155412 0.5680701 ]\n [ 0.38644803 -0.02155412 0.5680701 ]\n [ 0.38644803 -0.02155412 0.5680701 ]\n [ 0.38644803 -0.02155412 0.5680701 ]]",
|
60 |
+
"desired_goal": "[[ 1.1861188 1.5055628 0.9410931 ]\n [-0.43295297 -1.143413 1.729753 ]\n [ 0.32220852 0.40908936 0.2275586 ]\n [-0.7718447 -0.55403626 0.4225528 ]]",
|
61 |
+
"observation": "[[ 3.8644803e-01 -2.1554124e-02 5.6807011e-01 9.4809486e-03\n -1.7656593e-04 7.7672061e-03]\n [ 3.8644803e-01 -2.1554124e-02 5.6807011e-01 9.4809486e-03\n -1.7656593e-04 7.7672061e-03]\n [ 3.8644803e-01 -2.1554124e-02 5.6807011e-01 9.4809486e-03\n -1.7656593e-04 7.7672061e-03]\n [ 3.8644803e-01 -2.1554124e-02 5.6807011e-01 9.4809486e-03\n -1.7656593e-04 7.7672061e-03]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9OLPu8Ahsr25ul0+jTzyPRtJzj1rZZQ+WP0DPdGJBD74Hik+rlcFviSQN7weFDQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.00634419 -0.08697844 0.2165326 ]\n [ 0.11827955 0.10072538 0.28983626]\n [ 0.03222403 0.12943198 0.1651572 ]\n [-0.13021728 -0.0112038 0.17585799]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdowrLo5mMMCUhpRSlIwBbJRLMowBdJRHQKfqoaMrEtN1fZQoaAZoCWgPQwhQqKePwF8gwJSGlFKUaBVLMmgWR0Cn6kbkGRmsdX2UKGgGaAloD0MI1skZijtaMcCUhpRSlGgVSzJoFkdAp+nyYLLIP3V9lChoBmgJaA9DCAA3ixcLKyjAlIaUUpRoFUsyaBZHQKfpmsFMZgp1fZQoaAZoCWgPQwgZyLPLt/YgwJSGlFKUaBVLMmgWR0Cn673sgMc7dX2UKGgGaAloD0MIR4/f2/QnDcCUhpRSlGgVSzJoFkdAp+tjBGhEjXV9lChoBmgJaA9DCEI+6NmsugvAlIaUUpRoFUsyaBZHQKfrDbfxc3V1fZQoaAZoCWgPQwim7V9ZaW42wJSGlFKUaBVLMmgWR0Cn6rVSGahIdX2UKGgGaAloD0MIGr/wSpLDMsCUhpRSlGgVSzJoFkdAp+zUaya/h3V9lChoBmgJaA9DCGO0jqomcDjAlIaUUpRoFUsyaBZHQKfseXb/Ot51fZQoaAZoCWgPQwhq39xfPbI9wJSGlFKUaBVLMmgWR0Cn7CQHqu8sdX2UKGgGaAloD0MIjgHZ690f+7+UhpRSlGgVSzJoFkdAp+vLbzshPnV9lChoBmgJaA9DCGu3XWiuqyDAlIaUUpRoFUsyaBZHQKft6S1Vo6F1fZQoaAZoCWgPQwg17PfEOqkzwJSGlFKUaBVLMmgWR0Cn7Y7Xg9/0dX2UKGgGaAloD0MI4iL3dHV/OMCUhpRSlGgVSzJoFkdAp+05XKbKBHV9lChoBmgJaA9DCGx8JvvnmRrAlIaUUpRoFUsyaBZHQKfs4NgjQiR1fZQoaAZoCWgPQwhkrDb/r0odwJSGlFKUaBVLMmgWR0Cn70FEiMYNdX2UKGgGaAloD0MIQnbexmbXI8CUhpRSlGgVSzJoFkdAp+7nNke6qnV9lChoBmgJaA9DCJIhx9YzpALAlIaUUpRoFUsyaBZHQKfuke4Cp3p1fZQoaAZoCWgPQwjp76XwoBNCwJSGlFKUaBVLMmgWR0Cn7jmMn7YTdX2UKGgGaAloD0MIklhS7j5HDcCUhpRSlGgVSzJoFkdAp/CBoM8YAXV9lChoBmgJaA9DCM+/XfbrLgzAlIaUUpRoFUsyaBZHQKfwJ5ZbILh1fZQoaAZoCWgPQwhOX8/XLKsxwJSGlFKUaBVLMmgWR0Cn79MrmQr+dX2UKGgGaAloD0MIq7TFNT6T8b+UhpRSlGgVSzJoFkdAp+97WiDdxnV9lChoBmgJaA9DCLSR66aUF/S/lIaUUpRoFUsyaBZHQKfymlxffGd1fZQoaAZoCWgPQwi+TurL0pYqwJSGlFKUaBVLMmgWR0Cn8kCCBf8edX2UKGgGaAloD0MIW7QAbavZNcCUhpRSlGgVSzJoFkdAp/HtyxRl6XV9lChoBmgJaA9DCA+0AkNWByrAlIaUUpRoFUsyaBZHQKfxmBK+SKZ1fZQoaAZoCWgPQwhszOuIQ1YPwJSGlFKUaBVLMmgWR0Cn9GYXwb2ldX2UKGgGaAloD0MIiqw1lNqHM8CUhpRSlGgVSzJoFkdAp/QL3K0UoXV9lChoBmgJaA9DCL9EvHX+LQfAlIaUUpRoFUsyaBZHQKfzt1jAi3Z1fZQoaAZoCWgPQwgwLlVpi7MqwJSGlFKUaBVLMmgWR0Cn82Cf6Gg0dX2UKGgGaAloD0MIIcoXtJB8NcCUhpRSlGgVSzJoFkdAp/aLSLIgeXV9lChoBmgJaA9DCKpm1lJALkDAlIaUUpRoFUsyaBZHQKf2MXpGFzx1fZQoaAZoCWgPQwjiOsYVF6MywJSGlFKUaBVLMmgWR0Cn9d0UO/cndX2UKGgGaAloD0MIzxPP2QKiF8CUhpRSlGgVSzJoFkdAp/WG/i5uqHV9lChoBmgJaA9DCERQNXo11DfAlIaUUpRoFUsyaBZHQKf4ooVmBe51fZQoaAZoCWgPQwhJgQUwZYAtwJSGlFKUaBVLMmgWR0Cn+Ei5EtuldX2UKGgGaAloD0MIy0xp/S1xN8CUhpRSlGgVSzJoFkdAp/f1weeWfXV9lChoBmgJaA9DCEUTKGIR5ULAlIaUUpRoFUsyaBZHQKf3nlCkXUJ1fZQoaAZoCWgPQwhdTgmISXAzwJSGlFKUaBVLMmgWR0Cn+xdcKPXDdX2UKGgGaAloD0MI8RDGT+OCNMCUhpRSlGgVSzJoFkdAp/q8bedkKHV9lChoBmgJaA9DCA97oYDt+DXAlIaUUpRoFUsyaBZHQKf6Z52Qnx91fZQoaAZoCWgPQwhV+glntyI4wJSGlFKUaBVLMmgWR0Cn+g/SH/LldX2UKGgGaAloD0MIS5S9pZxvE8CUhpRSlGgVSzJoFkdAp/w7LIPsiXV9lChoBmgJaA9DCL0BZr6DPwDAlIaUUpRoFUsyaBZHQKf74FJQLux1fZQoaAZoCWgPQwhIowIn20AKwJSGlFKUaBVLMmgWR0Cn+4sEaESNdX2UKGgGaAloD0MIuLHZkeq7+r+UhpRSlGgVSzJoFkdAp/syc3EQ5HV9lChoBmgJaA9DCEYL0Laa1SzAlIaUUpRoFUsyaBZHQKf9d3LV4HJ1fZQoaAZoCWgPQwhgzJasirD8v5SGlFKUaBVLMmgWR0Cn/RyUTtb+dX2UKGgGaAloD0MIw5s1eF8FHcCUhpRSlGgVSzJoFkdAp/zHKfWc0HV9lChoBmgJaA9DCKGBWDZzcCLAlIaUUpRoFUsyaBZHQKf8bonrpq11fZQoaAZoCWgPQwgbvoV1400swJSGlFKUaBVLMmgWR0Cn/tR46fapdX2UKGgGaAloD0MI/z9OmDCaC8CUhpRSlGgVSzJoFkdAp/55oXbdrXV9lChoBmgJaA9DCHtntFVJFBnAlIaUUpRoFUsyaBZHQKf+JDrqt5l1fZQoaAZoCWgPQwhWfa62Yn8NwJSGlFKUaBVLMmgWR0Cn/cwTM7lrdX2UKGgGaAloD0MIMPSI0XOTMMCUhpRSlGgVSzJoFkdAqAAmdCmdiHV9lChoBmgJaA9DCBgl6C/0VDDAlIaUUpRoFUsyaBZHQKf/zCpFTeh1fZQoaAZoCWgPQwg+7fDXZM34v5SGlFKUaBVLMmgWR0Cn/3bCaZx8dX2UKGgGaAloD0MIR1fp7jp3McCUhpRSlGgVSzJoFkdAp/8eOn2qUHV9lChoBmgJaA9DCOwVFtwPqBrAlIaUUpRoFUsyaBZHQKgBb++/QBx1fZQoaAZoCWgPQwilaOVeYPYIwJSGlFKUaBVLMmgWR0CoARU/fO2RdX2UKGgGaAloD0MI1/uNdtzwBcCUhpRSlGgVSzJoFkdAqADAHX2/SHV9lChoBmgJaA9DCFsnLscrPDPAlIaUUpRoFUsyaBZHQKgAaJuVHFx1fZQoaAZoCWgPQwjo+dNGdfr+v5SGlFKUaBVLMmgWR0CoAsZrHlwMdX2UKGgGaAloD0MI/89hvryIKsCUhpRSlGgVSzJoFkdAqAJrt1IRRXV9lChoBmgJaA9DCDI6IAn7thfAlIaUUpRoFUsyaBZHQKgCFnbItDl1fZQoaAZoCWgPQwjJdyl1yVAtwJSGlFKUaBVLMmgWR0CoAb/Tb349dX2UKGgGaAloD0MIyo0iaw3l/L+UhpRSlGgVSzJoFkdAqAP4WYWtVHV9lChoBmgJaA9DCPg2/dmPVBPAlIaUUpRoFUsyaBZHQKgDnexfOUt1fZQoaAZoCWgPQwhd4PJYM5IPwJSGlFKUaBVLMmgWR0CoA0jpTuOTdX2UKGgGaAloD0MIL1IoC1//EsCUhpRSlGgVSzJoFkdAqALxWkrPMXV9lChoBmgJaA9DCPMbJhqkwAPAlIaUUpRoFUsyaBZHQKgFMhoM8YB1fZQoaAZoCWgPQwiBzw8jhKcOwJSGlFKUaBVLMmgWR0CoBNdBjWkKdX2UKGgGaAloD0MIBHKJIw/kBcCUhpRSlGgVSzJoFkdAqASB/y5I6XV9lChoBmgJaA9DCC0I5X0cpSnAlIaUUpRoFUsyaBZHQKgEK7OE/Sp1fZQoaAZoCWgPQwjEr1jDRa4FwJSGlFKUaBVLMmgWR0CoBktD+irUdX2UKGgGaAloD0MIRuo9ldNe8r+UhpRSlGgVSzJoFkdAqAXwf0VafXV9lChoBmgJaA9DCLaEfNCzOQnAlIaUUpRoFUsyaBZHQKgFmyAxzq91fZQoaAZoCWgPQwjObi2T4bgCwJSGlFKUaBVLMmgWR0CoBUKSgXdkdX2UKGgGaAloD0MINiGtMehkE8CUhpRSlGgVSzJoFkdAqAehnYg7o3V9lChoBmgJaA9DCESlETP7jBHAlIaUUpRoFUsyaBZHQKgHR6tT1kF1fZQoaAZoCWgPQwhpAG+BBJUUwJSGlFKUaBVLMmgWR0CoBvJmNBGAdX2UKGgGaAloD0MIWOGWj6QEIcCUhpRSlGgVSzJoFkdAqAaZ+tr9EXV9lChoBmgJaA9DCGyU9ZuJSQ7AlIaUUpRoFUsyaBZHQKgIz69CeEt1fZQoaAZoCWgPQwjsouiBjyEMwJSGlFKUaBVLMmgWR0CoCHUEX+ERdX2UKGgGaAloD0MIevzepj8LIsCUhpRSlGgVSzJoFkdAqAgf1WbPQnV9lChoBmgJaA9DCHHnwkgvavu/lIaUUpRoFUsyaBZHQKgHx3EAHVx1fZQoaAZoCWgPQwggfZOmQaEUwJSGlFKUaBVLMmgWR0CoCe8fvF3qdX2UKGgGaAloD0MI3Zcz2xU6BMCUhpRSlGgVSzJoFkdAqAmUTlDF63V9lChoBmgJaA9DCFnaqbncoP2/lIaUUpRoFUsyaBZHQKgJPvfj0cx1fZQoaAZoCWgPQwj2fM1y2UgGwJSGlFKUaBVLMmgWR0CoCOZl4C6pdX2UKGgGaAloD0MItHIvMCsEE8CUhpRSlGgVSzJoFkdAqAssBEKE4HV9lChoBmgJaA9DCDZ4X5ULVQvAlIaUUpRoFUsyaBZHQKgK0WE9Mbp1fZQoaAZoCWgPQwhvD0JAvqQMwJSGlFKUaBVLMmgWR0CoCnwxFiKBdX2UKGgGaAloD0MIkh/xK9YgGcCUhpRSlGgVSzJoFkdAqAojxkNF0HV9lChoBmgJaA9DCGxe1VktMPS/lIaUUpRoFUsyaBZHQKgMUvIwM6R1fZQoaAZoCWgPQwj5LTpZah0LwJSGlFKUaBVLMmgWR0CoC/gx8D0UdX2UKGgGaAloD0MIhX07iQg/B8CUhpRSlGgVSzJoFkdAqAui8pTdcnV9lChoBmgJaA9DCDvEP2zpkQrAlIaUUpRoFUsyaBZHQKgLSokRjBl1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c338736466eef3b11430dcc02be7090fd61be1311168047beb17496f2264018
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a3cf232acd1bd2c596f7d08ce54b0a58f82bd60ece41d8dfcd81279a596e075
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f13c8848ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f13c884b0f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676417679279774033, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhNzFPkaSsLwLbRE/hNzFPkaSsLwLbRE/hNzFPkaSsLwLbRE/hNzFPkaSsLwLbRE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvtKXP0i2wD9663A/A6zdvltbkr+MaN0/hPikPil00T4fBWk+nZdFv1LVDb/XWNg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACE3MU+RpKwvAttET/7VRs8jiQ5uQyE/juE3MU+RpKwvAttET/7VRs8jiQ5uQyE/juE3MU+RpKwvAttET/7VRs8jiQ5uQyE/juE3MU+RpKwvAttET/7VRs8jiQ5uQyE/juUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38644803 -0.02155412 0.5680701 ]\n [ 0.38644803 -0.02155412 0.5680701 ]\n [ 0.38644803 -0.02155412 0.5680701 ]\n [ 0.38644803 -0.02155412 0.5680701 ]]", "desired_goal": "[[ 1.1861188 1.5055628 0.9410931 ]\n [-0.43295297 -1.143413 1.729753 ]\n [ 0.32220852 0.40908936 0.2275586 ]\n [-0.7718447 -0.55403626 0.4225528 ]]", "observation": "[[ 3.8644803e-01 -2.1554124e-02 5.6807011e-01 9.4809486e-03\n -1.7656593e-04 7.7672061e-03]\n [ 3.8644803e-01 -2.1554124e-02 5.6807011e-01 9.4809486e-03\n -1.7656593e-04 7.7672061e-03]\n [ 3.8644803e-01 -2.1554124e-02 5.6807011e-01 9.4809486e-03\n -1.7656593e-04 7.7672061e-03]\n [ 3.8644803e-01 -2.1554124e-02 5.6807011e-01 9.4809486e-03\n -1.7656593e-04 7.7672061e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9OLPu8Ahsr25ul0+jTzyPRtJzj1rZZQ+WP0DPdGJBD74Hik+rlcFviSQN7weFDQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00634419 -0.08697844 0.2165326 ]\n [ 0.11827955 0.10072538 0.28983626]\n [ 0.03222403 0.12943198 0.1651572 ]\n [-0.13021728 -0.0112038 0.17585799]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdowrLo5mMMCUhpRSlIwBbJRLMowBdJRHQKfqoaMrEtN1fZQoaAZoCWgPQwhQqKePwF8gwJSGlFKUaBVLMmgWR0Cn6kbkGRmsdX2UKGgGaAloD0MI1skZijtaMcCUhpRSlGgVSzJoFkdAp+nyYLLIP3V9lChoBmgJaA9DCAA3ixcLKyjAlIaUUpRoFUsyaBZHQKfpmsFMZgp1fZQoaAZoCWgPQwgZyLPLt/YgwJSGlFKUaBVLMmgWR0Cn673sgMc7dX2UKGgGaAloD0MIR4/f2/QnDcCUhpRSlGgVSzJoFkdAp+tjBGhEjXV9lChoBmgJaA9DCEI+6NmsugvAlIaUUpRoFUsyaBZHQKfrDbfxc3V1fZQoaAZoCWgPQwim7V9ZaW42wJSGlFKUaBVLMmgWR0Cn6rVSGahIdX2UKGgGaAloD0MIGr/wSpLDMsCUhpRSlGgVSzJoFkdAp+zUaya/h3V9lChoBmgJaA9DCGO0jqomcDjAlIaUUpRoFUsyaBZHQKfseXb/Ot51fZQoaAZoCWgPQwhq39xfPbI9wJSGlFKUaBVLMmgWR0Cn7CQHqu8sdX2UKGgGaAloD0MIjgHZ690f+7+UhpRSlGgVSzJoFkdAp+vLbzshPnV9lChoBmgJaA9DCGu3XWiuqyDAlIaUUpRoFUsyaBZHQKft6S1Vo6F1fZQoaAZoCWgPQwg17PfEOqkzwJSGlFKUaBVLMmgWR0Cn7Y7Xg9/0dX2UKGgGaAloD0MI4iL3dHV/OMCUhpRSlGgVSzJoFkdAp+05XKbKBHV9lChoBmgJaA9DCGx8JvvnmRrAlIaUUpRoFUsyaBZHQKfs4NgjQiR1fZQoaAZoCWgPQwhkrDb/r0odwJSGlFKUaBVLMmgWR0Cn70FEiMYNdX2UKGgGaAloD0MIQnbexmbXI8CUhpRSlGgVSzJoFkdAp+7nNke6qnV9lChoBmgJaA9DCJIhx9YzpALAlIaUUpRoFUsyaBZHQKfuke4Cp3p1fZQoaAZoCWgPQwjp76XwoBNCwJSGlFKUaBVLMmgWR0Cn7jmMn7YTdX2UKGgGaAloD0MIklhS7j5HDcCUhpRSlGgVSzJoFkdAp/CBoM8YAXV9lChoBmgJaA9DCM+/XfbrLgzAlIaUUpRoFUsyaBZHQKfwJ5ZbILh1fZQoaAZoCWgPQwhOX8/XLKsxwJSGlFKUaBVLMmgWR0Cn79MrmQr+dX2UKGgGaAloD0MIq7TFNT6T8b+UhpRSlGgVSzJoFkdAp+97WiDdxnV9lChoBmgJaA9DCLSR66aUF/S/lIaUUpRoFUsyaBZHQKfymlxffGd1fZQoaAZoCWgPQwi+TurL0pYqwJSGlFKUaBVLMmgWR0Cn8kCCBf8edX2UKGgGaAloD0MIW7QAbavZNcCUhpRSlGgVSzJoFkdAp/HtyxRl6XV9lChoBmgJaA9DCA+0AkNWByrAlIaUUpRoFUsyaBZHQKfxmBK+SKZ1fZQoaAZoCWgPQwhszOuIQ1YPwJSGlFKUaBVLMmgWR0Cn9GYXwb2ldX2UKGgGaAloD0MIiqw1lNqHM8CUhpRSlGgVSzJoFkdAp/QL3K0UoXV9lChoBmgJaA9DCL9EvHX+LQfAlIaUUpRoFUsyaBZHQKfzt1jAi3Z1fZQoaAZoCWgPQwgwLlVpi7MqwJSGlFKUaBVLMmgWR0Cn82Cf6Gg0dX2UKGgGaAloD0MIIcoXtJB8NcCUhpRSlGgVSzJoFkdAp/aLSLIgeXV9lChoBmgJaA9DCKpm1lJALkDAlIaUUpRoFUsyaBZHQKf2MXpGFzx1fZQoaAZoCWgPQwjiOsYVF6MywJSGlFKUaBVLMmgWR0Cn9d0UO/cndX2UKGgGaAloD0MIzxPP2QKiF8CUhpRSlGgVSzJoFkdAp/WG/i5uqHV9lChoBmgJaA9DCERQNXo11DfAlIaUUpRoFUsyaBZHQKf4ooVmBe51fZQoaAZoCWgPQwhJgQUwZYAtwJSGlFKUaBVLMmgWR0Cn+Ei5EtuldX2UKGgGaAloD0MIy0xp/S1xN8CUhpRSlGgVSzJoFkdAp/f1weeWfXV9lChoBmgJaA9DCEUTKGIR5ULAlIaUUpRoFUsyaBZHQKf3nlCkXUJ1fZQoaAZoCWgPQwhdTgmISXAzwJSGlFKUaBVLMmgWR0Cn+xdcKPXDdX2UKGgGaAloD0MI8RDGT+OCNMCUhpRSlGgVSzJoFkdAp/q8bedkKHV9lChoBmgJaA9DCA97oYDt+DXAlIaUUpRoFUsyaBZHQKf6Z52Qnx91fZQoaAZoCWgPQwhV+glntyI4wJSGlFKUaBVLMmgWR0Cn+g/SH/LldX2UKGgGaAloD0MIS5S9pZxvE8CUhpRSlGgVSzJoFkdAp/w7LIPsiXV9lChoBmgJaA9DCL0BZr6DPwDAlIaUUpRoFUsyaBZHQKf74FJQLux1fZQoaAZoCWgPQwhIowIn20AKwJSGlFKUaBVLMmgWR0Cn+4sEaESNdX2UKGgGaAloD0MIuLHZkeq7+r+UhpRSlGgVSzJoFkdAp/syc3EQ5HV9lChoBmgJaA9DCEYL0Laa1SzAlIaUUpRoFUsyaBZHQKf9d3LV4HJ1fZQoaAZoCWgPQwhgzJasirD8v5SGlFKUaBVLMmgWR0Cn/RyUTtb+dX2UKGgGaAloD0MIw5s1eF8FHcCUhpRSlGgVSzJoFkdAp/zHKfWc0HV9lChoBmgJaA9DCKGBWDZzcCLAlIaUUpRoFUsyaBZHQKf8bonrpq11fZQoaAZoCWgPQwgbvoV1400swJSGlFKUaBVLMmgWR0Cn/tR46fapdX2UKGgGaAloD0MI/z9OmDCaC8CUhpRSlGgVSzJoFkdAp/55oXbdrXV9lChoBmgJaA9DCHtntFVJFBnAlIaUUpRoFUsyaBZHQKf+JDrqt5l1fZQoaAZoCWgPQwhWfa62Yn8NwJSGlFKUaBVLMmgWR0Cn/cwTM7lrdX2UKGgGaAloD0MIMPSI0XOTMMCUhpRSlGgVSzJoFkdAqAAmdCmdiHV9lChoBmgJaA9DCBgl6C/0VDDAlIaUUpRoFUsyaBZHQKf/zCpFTeh1fZQoaAZoCWgPQwg+7fDXZM34v5SGlFKUaBVLMmgWR0Cn/3bCaZx8dX2UKGgGaAloD0MIR1fp7jp3McCUhpRSlGgVSzJoFkdAp/8eOn2qUHV9lChoBmgJaA9DCOwVFtwPqBrAlIaUUpRoFUsyaBZHQKgBb++/QBx1fZQoaAZoCWgPQwilaOVeYPYIwJSGlFKUaBVLMmgWR0CoARU/fO2RdX2UKGgGaAloD0MI1/uNdtzwBcCUhpRSlGgVSzJoFkdAqADAHX2/SHV9lChoBmgJaA9DCFsnLscrPDPAlIaUUpRoFUsyaBZHQKgAaJuVHFx1fZQoaAZoCWgPQwjo+dNGdfr+v5SGlFKUaBVLMmgWR0CoAsZrHlwMdX2UKGgGaAloD0MI/89hvryIKsCUhpRSlGgVSzJoFkdAqAJrt1IRRXV9lChoBmgJaA9DCDI6IAn7thfAlIaUUpRoFUsyaBZHQKgCFnbItDl1fZQoaAZoCWgPQwjJdyl1yVAtwJSGlFKUaBVLMmgWR0CoAb/Tb349dX2UKGgGaAloD0MIyo0iaw3l/L+UhpRSlGgVSzJoFkdAqAP4WYWtVHV9lChoBmgJaA9DCPg2/dmPVBPAlIaUUpRoFUsyaBZHQKgDnexfOUt1fZQoaAZoCWgPQwhd4PJYM5IPwJSGlFKUaBVLMmgWR0CoA0jpTuOTdX2UKGgGaAloD0MIL1IoC1//EsCUhpRSlGgVSzJoFkdAqALxWkrPMXV9lChoBmgJaA9DCPMbJhqkwAPAlIaUUpRoFUsyaBZHQKgFMhoM8YB1fZQoaAZoCWgPQwiBzw8jhKcOwJSGlFKUaBVLMmgWR0CoBNdBjWkKdX2UKGgGaAloD0MIBHKJIw/kBcCUhpRSlGgVSzJoFkdAqASB/y5I6XV9lChoBmgJaA9DCC0I5X0cpSnAlIaUUpRoFUsyaBZHQKgEK7OE/Sp1fZQoaAZoCWgPQwjEr1jDRa4FwJSGlFKUaBVLMmgWR0CoBktD+irUdX2UKGgGaAloD0MIRuo9ldNe8r+UhpRSlGgVSzJoFkdAqAXwf0VafXV9lChoBmgJaA9DCLaEfNCzOQnAlIaUUpRoFUsyaBZHQKgFmyAxzq91fZQoaAZoCWgPQwjObi2T4bgCwJSGlFKUaBVLMmgWR0CoBUKSgXdkdX2UKGgGaAloD0MINiGtMehkE8CUhpRSlGgVSzJoFkdAqAehnYg7o3V9lChoBmgJaA9DCESlETP7jBHAlIaUUpRoFUsyaBZHQKgHR6tT1kF1fZQoaAZoCWgPQwhpAG+BBJUUwJSGlFKUaBVLMmgWR0CoBvJmNBGAdX2UKGgGaAloD0MIWOGWj6QEIcCUhpRSlGgVSzJoFkdAqAaZ+tr9EXV9lChoBmgJaA9DCGyU9ZuJSQ7AlIaUUpRoFUsyaBZHQKgIz69CeEt1fZQoaAZoCWgPQwjsouiBjyEMwJSGlFKUaBVLMmgWR0CoCHUEX+ERdX2UKGgGaAloD0MIevzepj8LIsCUhpRSlGgVSzJoFkdAqAgf1WbPQnV9lChoBmgJaA9DCHHnwkgvavu/lIaUUpRoFUsyaBZHQKgHx3EAHVx1fZQoaAZoCWgPQwggfZOmQaEUwJSGlFKUaBVLMmgWR0CoCe8fvF3qdX2UKGgGaAloD0MI3Zcz2xU6BMCUhpRSlGgVSzJoFkdAqAmUTlDF63V9lChoBmgJaA9DCFnaqbncoP2/lIaUUpRoFUsyaBZHQKgJPvfj0cx1fZQoaAZoCWgPQwj2fM1y2UgGwJSGlFKUaBVLMmgWR0CoCOZl4C6pdX2UKGgGaAloD0MItHIvMCsEE8CUhpRSlGgVSzJoFkdAqAssBEKE4HV9lChoBmgJaA9DCDZ4X5ULVQvAlIaUUpRoFUsyaBZHQKgK0WE9Mbp1fZQoaAZoCWgPQwhvD0JAvqQMwJSGlFKUaBVLMmgWR0CoCnwxFiKBdX2UKGgGaAloD0MIkh/xK9YgGcCUhpRSlGgVSzJoFkdAqAojxkNF0HV9lChoBmgJaA9DCGxe1VktMPS/lIaUUpRoFUsyaBZHQKgMUvIwM6R1fZQoaAZoCWgPQwj5LTpZah0LwJSGlFKUaBVLMmgWR0CoC/gx8D0UdX2UKGgGaAloD0MIhX07iQg/B8CUhpRSlGgVSzJoFkdAqAui8pTdcnV9lChoBmgJaA9DCDvEP2zpkQrAlIaUUpRoFUsyaBZHQKgLSokRjBl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (465 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -5.055187906511128, "std_reward": 4.60113419827911, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-15T00:26:03.076706"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d5ee30bbf1ac6ef8b702ec8f9929fd9b96793c1409ba9c36ffc3ce42f95db30
|
3 |
+
size 3056
|