visheratin commited on
Commit
052e805
·
1 Parent(s): 50e7f4f

Upload modeling_llava.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_llava.py +1040 -9
modeling_llava.py CHANGED
@@ -1,18 +1,1049 @@
1
  # coding=utf-8
2
- from dataclasses import dataclass
3
- from typing import List, Optional, Tuple, Union
 
4
 
5
  import torch
 
6
  import torch.utils.checkpoint
7
- from torch import nn
 
 
 
 
 
8
 
9
- from transformers import PreTrainedModel
10
- from transformers.modeling_outputs import ModelOutput
 
 
 
 
 
 
 
 
11
 
12
- from modeling_phi import PhiForCausalLM, InferenceParams
13
- from processing_llava import OpenCLIPImageProcessor
14
- from configuration_llava import LlavaConfig
15
- from open_clip import create_model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
 
18
  @dataclass
 
1
  # coding=utf-8
2
+ import math
3
+ from dataclasses import dataclass, field
4
+ from typing import Any, Dict, List, Optional, Tuple, Union
5
 
6
  import torch
7
+ import torch.nn as nn
8
  import torch.utils.checkpoint
9
+ from configuration_llava import LlavaConfig, PhiConfig
10
+ from einops import rearrange, repeat
11
+ from open_clip import create_model
12
+ from transformers import PretrainedConfig, PreTrainedModel
13
+ from transformers.activations import ACT2FN
14
+ from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput
15
 
16
+ try:
17
+ from flash_attn.bert_padding import pad_input, unpad_input
18
+ from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
19
+ from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
20
+ from flash_attn.ops.fused_dense import FusedDense
21
+ except:
22
+ pad_input, unpad_input = None, None
23
+ FlashRotaryEmbedding = None
24
+ FlashSelfAttention, FlashCrossAttention = None, None
25
+ FusedDense = None
26
 
27
+
28
+ @dataclass
29
+ class InferenceParams:
30
+ """Inference parameters passed to model to efficiently calculate
31
+ and store context during inference.
32
+
33
+ Reference:
34
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
35
+
36
+ Args:
37
+ max_seqlen: Maximum sequence length.
38
+ max_batch_size: Maximum batch size.
39
+ seqlen_offset: Sequence length offset.
40
+ batch_size_offset: Batch size offset.
41
+ key_value_memory_dict: Key value memory dictionary.
42
+ lengths_per_sample: Lengths per sample.
43
+
44
+ """
45
+
46
+ max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
47
+
48
+ max_batch_size: int = field(metadata={"help": "Maximum batch size."})
49
+
50
+ seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
51
+
52
+ batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
53
+
54
+ key_value_memory_dict: Dict[str, Any] = field(
55
+ default_factory=dict, metadata={"help": "Key value memory dictionary."}
56
+ )
57
+
58
+ lengths_per_sample: torch.Tensor = field(
59
+ default=None, metadata={"help": "Lengths per sample."}
60
+ )
61
+
62
+
63
+ class Embedding(nn.Module):
64
+ """Token embedding with dropout."""
65
+
66
+ def __init__(self, config: PretrainedConfig) -> None:
67
+ super().__init__()
68
+
69
+ self.wte = nn.Embedding(config.vocab_size, config.n_embd)
70
+ self.drop = nn.Dropout(config.embd_pdrop)
71
+
72
+ def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
73
+ input_shape = input_ids.size()
74
+ input_ids = input_ids.view(-1, input_shape[-1])
75
+
76
+ hidden_states = self.wte(input_ids)
77
+ hidden_states = self.drop(hidden_states)
78
+
79
+ return hidden_states
80
+
81
+
82
+ def _apply_rotary_emb(
83
+ x: torch.FloatTensor,
84
+ cos: torch.FloatTensor,
85
+ sin: torch.FloatTensor,
86
+ ) -> torch.FloatTensor:
87
+ _, seqlen, _, _ = x.shape
88
+ _, rotary_dim = cos.shape
89
+ rotary_dim *= 2
90
+
91
+ x_rot = x[:, :, :, :rotary_dim]
92
+ x_pass = x[:, :, :, rotary_dim:]
93
+
94
+ x1, x2 = x_rot.chunk(2, dim=-1)
95
+ c, s = (
96
+ rearrange(cos[:seqlen], "s d -> s 1 d"),
97
+ rearrange(sin[:seqlen], "s d -> s 1 d"),
98
+ )
99
+ x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
100
+
101
+ x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
102
+
103
+ return torch.cat([x_rot, x_pass], axis=-1)
104
+
105
+
106
+ def _apply_rotary_emb_kv(
107
+ kv: torch.FloatTensor,
108
+ cos: torch.FloatTensor,
109
+ sin: torch.FloatTensor,
110
+ cos_k: Optional[torch.FloatTensor] = None,
111
+ sin_k: Optional[torch.FloatTensor] = None,
112
+ ) -> torch.FloatTensor:
113
+ _, seqlen, _, _, _ = kv.shape
114
+ _, rotary_dim = cos.shape
115
+ rotary_dim *= 2
116
+
117
+ k_rot = kv[:, :, 0, :, :rotary_dim]
118
+ k_pass = kv[:, :, 0, :, rotary_dim:]
119
+
120
+ k1, k2 = k_rot.chunk(2, dim=-1)
121
+ c, s = (
122
+ rearrange(cos[:seqlen], "s d -> s 1 d"),
123
+ rearrange(sin[:seqlen], "s d -> s 1 d"),
124
+ )
125
+ k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
126
+
127
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
128
+
129
+ return torch.cat(
130
+ [
131
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
132
+ kv[:, :, 1:2, :, :],
133
+ ],
134
+ axis=2,
135
+ )
136
+
137
+
138
+ def _apply_rotary_emb_qkv(
139
+ qkv: torch.FloatTensor,
140
+ cos: torch.FloatTensor,
141
+ sin: torch.FloatTensor,
142
+ cos_k: Optional[torch.FloatTensor] = None,
143
+ sin_k: Optional[torch.FloatTensor] = None,
144
+ ) -> torch.FloatTensor:
145
+ _, seqlen, _, _, _ = qkv.shape
146
+ _, rotary_dim = cos.shape
147
+ rotary_dim *= 2
148
+
149
+ q_rot = qkv[:, :, 0, :, :rotary_dim]
150
+ q_pass = qkv[:, :, 0, :, rotary_dim:]
151
+
152
+ k_rot = qkv[:, :, 1, :, :rotary_dim]
153
+ k_pass = qkv[:, :, 1, :, rotary_dim:]
154
+
155
+ q1, q2 = q_rot.chunk(2, dim=-1)
156
+ k1, k2 = k_rot.chunk(2, dim=-1)
157
+ c, s = (
158
+ rearrange(cos[:seqlen], "s d -> s 1 d"),
159
+ rearrange(sin[:seqlen], "s d -> s 1 d"),
160
+ )
161
+ q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
162
+
163
+ q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
164
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
165
+
166
+ return torch.cat(
167
+ [
168
+ torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
169
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
170
+ qkv[:, :, 2:3, :, :],
171
+ ],
172
+ axis=2,
173
+ )
174
+
175
+
176
+ class RotaryEmbedding(nn.Module):
177
+ """Rotary positional embedding (RoPE).
178
+
179
+ Reference:
180
+ RoFormer: Enhanced Transformer with Rotary Position Embedding.
181
+ https://arxiv.org/pdf/2104.09864.pdf.
182
+
183
+ """
184
+
185
+ def __init__(
186
+ self,
187
+ dim: int,
188
+ base: int = 10000,
189
+ scale_base: Optional[float] = None,
190
+ pos_idx_in_fp32: bool = True,
191
+ max_position_embeddings: int = 2048,
192
+ device: Optional[str] = None,
193
+ **kwargs,
194
+ ) -> None:
195
+ super().__init__()
196
+
197
+ if scale_base is not None:
198
+ raise NotImplementedError
199
+
200
+ self.dim = dim
201
+ self.base = float(base)
202
+ self.scale_base = scale_base
203
+ self.pos_idx_in_fp32 = pos_idx_in_fp32
204
+ self.max_position_embeddings = max_position_embeddings
205
+ self.device = device
206
+
207
+ # Generate and save the inverse frequency buffer (non-trainable)
208
+ inv_freq = self._compute_inv_freq(device)
209
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
210
+
211
+ # Generate and save the scale buffer (non-trainable)
212
+ scale = (
213
+ (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
214
+ / (1.4 * dim)
215
+ if scale_base is not None
216
+ else None
217
+ )
218
+ self.register_buffer("scale", scale, persistent=False)
219
+
220
+ # Initialize cached attributes since ONNX can't rely on dynamic initialization
221
+ self._update_cos_sin_cache(
222
+ max_position_embeddings, device=device, dtype=torch.float32
223
+ )
224
+
225
+ def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
226
+ return 1.0 / (
227
+ self.base
228
+ ** (
229
+ torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
230
+ / self.dim
231
+ )
232
+ )
233
+
234
+ def _update_cos_sin_cache(
235
+ self,
236
+ seqlen: int,
237
+ device: Optional[str] = None,
238
+ dtype: Optional[torch.dtype] = None,
239
+ ) -> None:
240
+ self._seq_len_cached = seqlen
241
+
242
+ # fp32 is preferred since the output of `torch.arange` can be quite large
243
+ # and bf16 would lose a lot of precision
244
+ if self.pos_idx_in_fp32:
245
+ t = torch.arange(seqlen, device=device, dtype=torch.float32)
246
+ if self.inv_freq.dtype != torch.float32:
247
+ inv_freq = self._compute_inv_freq(device=device)
248
+ else:
249
+ inv_freq = self.inv_freq
250
+ else:
251
+ t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
252
+ inv_freq = self.inv_freq
253
+
254
+ # `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
255
+ freqs = torch.outer(t, inv_freq)
256
+ if self.scale is None:
257
+ self._cos_cached = torch.cos(freqs).to(dtype)
258
+ self._sin_cached = torch.sin(freqs).to(dtype)
259
+ else:
260
+ power = (
261
+ torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
262
+ - seqlen // 2
263
+ ) / self.scale_base
264
+ scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
265
+
266
+ # Force the scale multiplication to happen in fp32
267
+ self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
268
+ self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
269
+ self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
270
+ self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
271
+
272
+ def forward(
273
+ self,
274
+ qkv: torch.Tensor,
275
+ kv: Optional[torch.Tensor] = None,
276
+ seqlen_offset: int = 0,
277
+ **kwargs,
278
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
279
+ if (
280
+ self._seq_len_cached < qkv.shape[1] + seqlen_offset
281
+ or self._cos_cached.device != qkv.device
282
+ or self._cos_cached.dtype != qkv.dtype
283
+ or (self.training and self._cos_cached.is_inference())
284
+ ):
285
+ self._update_cos_sin_cache(
286
+ qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype
287
+ )
288
+
289
+ if kv is None:
290
+ return _apply_rotary_emb_qkv(
291
+ qkv,
292
+ self._cos_cached[seqlen_offset:],
293
+ self._sin_cached[seqlen_offset:],
294
+ )
295
+ else:
296
+ q = _apply_rotary_emb(
297
+ qkv,
298
+ self._cos_cached[seqlen_offset:],
299
+ self._sin_cached[seqlen_offset:],
300
+ )
301
+ kv = _apply_rotary_emb_kv(
302
+ kv,
303
+ self._cos_cached[seqlen_offset:],
304
+ self._sin_cached[seqlen_offset:],
305
+ )
306
+
307
+ return q, kv
308
+
309
+
310
+ class MLP(nn.Module):
311
+ """Multi-Layer Perceptron.
312
+
313
+ Reference:
314
+ Attention Is All You Need.
315
+ https://arxiv.org/pdf/1706.03762.pdf.
316
+
317
+ """
318
+
319
+ def __init__(
320
+ self,
321
+ config: PretrainedConfig,
322
+ n_inner: Optional[int] = None,
323
+ act_fn: Optional[str] = None,
324
+ ) -> None:
325
+ super().__init__()
326
+
327
+ act_fn = config.activation_function if act_fn is None else act_fn
328
+
329
+ n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
330
+ n_inner = n_inner if n_inner is not None else 4 * config.n_embd
331
+
332
+ self.fc1 = nn.Linear(config.n_embd, n_inner)
333
+ self.fc2 = nn.Linear(n_inner, config.n_embd)
334
+ self.act = ACT2FN[act_fn]
335
+
336
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
337
+ hidden_states = self.fc1(hidden_states)
338
+ hidden_states = self.act(hidden_states)
339
+ hidden_states = self.fc2(hidden_states)
340
+
341
+ return hidden_states
342
+
343
+
344
+ class SelfAttention(nn.Module):
345
+ """Self-attention layer (compatible with PyTorch).
346
+
347
+ Reference:
348
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
349
+
350
+ """
351
+
352
+ def __init__(
353
+ self,
354
+ causal: bool = True,
355
+ softmax_scale: Optional[float] = None,
356
+ attention_dropout: float = 0.0,
357
+ ) -> None:
358
+ super().__init__()
359
+
360
+ self.causal = causal
361
+ self.softmax_scale = softmax_scale
362
+ self.drop = nn.Dropout(attention_dropout)
363
+
364
+ @torch.autocast("cpu", enabled=False)
365
+ @torch.autocast("cuda", enabled=False)
366
+ def forward(
367
+ self,
368
+ qkv: torch.FloatTensor,
369
+ causal: bool = None,
370
+ key_padding_mask: Optional[torch.BoolTensor] = None,
371
+ **kwargs,
372
+ ) -> torch.FloatTensor:
373
+ batch_size, seqlen = qkv.shape[0], qkv.shape[1]
374
+ q, k, v = qkv.unbind(dim=2)
375
+
376
+ q = q.to(torch.float32)
377
+ k = k.to(torch.float32)
378
+
379
+ causal = self.causal if causal is None else causal
380
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
381
+
382
+ # Autocast is manually disabled to avoid `torch.einsum` performing the operation
383
+ # using float16, which might lead to overflow
384
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
385
+
386
+ if key_padding_mask is not None:
387
+ padding_mask = torch.full(
388
+ (batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
389
+ )
390
+ padding_mask.masked_fill_(key_padding_mask, 0.0)
391
+
392
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
393
+
394
+ if causal:
395
+ causal_mask = torch.triu(
396
+ torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
397
+ )
398
+ scores = scores + causal_mask.to(dtype=scores.dtype)
399
+
400
+ attention = torch.softmax(scores, dim=-1).to(v.dtype)
401
+ attention = self.drop(attention)
402
+
403
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
404
+
405
+ return output
406
+
407
+
408
+ class CrossAttention(nn.Module):
409
+ """Cross-attention layer (compatible with PyTorch).
410
+
411
+ Reference:
412
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
413
+
414
+ """
415
+
416
+ def __init__(
417
+ self,
418
+ causal: bool = True,
419
+ softmax_scale: Optional[float] = None,
420
+ attention_dropout: float = 0.0,
421
+ ) -> None:
422
+ super().__init__()
423
+
424
+ self.causal = causal
425
+ self.softmax_scale = softmax_scale
426
+ self.drop = nn.Dropout(attention_dropout)
427
+
428
+ @torch.autocast("cpu", enabled=False)
429
+ @torch.autocast("cuda", enabled=False)
430
+ def forward(
431
+ self,
432
+ q: torch.FloatTensor,
433
+ kv: torch.FloatTensor,
434
+ causal: bool = None,
435
+ key_padding_mask: Optional[torch.BoolTensor] = None,
436
+ **kwargs,
437
+ ) -> torch.FloatTensor:
438
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
439
+ seqlen_k = kv.shape[1]
440
+
441
+ if kv.shape[3] != q.shape[2]:
442
+ kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
443
+ k, v = kv.unbind(dim=2)
444
+
445
+ q = q.to(torch.float32)
446
+ k = k.to(torch.float32)
447
+
448
+ causal = self.causal if causal is None else causal
449
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
450
+
451
+ # Autocast is manually disabled to avoid `torch.einsum` performing the operation
452
+ # using float16, which might lead to overflow
453
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
454
+
455
+ if key_padding_mask is not None:
456
+ padding_mask = torch.full(
457
+ (batch_size, seqlen_k),
458
+ -10000.0,
459
+ dtype=scores.dtype,
460
+ device=scores.device,
461
+ )
462
+ padding_mask.masked_fill_(key_padding_mask, 0.0)
463
+
464
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
465
+
466
+ if causal:
467
+ rows = rearrange(
468
+ torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
469
+ )
470
+ cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
471
+ causal_mask = cols > rows + seqlen_k - seqlen_q
472
+
473
+ scores = scores.masked_fill(causal_mask, -10000.0)
474
+
475
+ attention = torch.softmax(scores, dim=-1).to(v.dtype)
476
+ attention = self.drop(attention)
477
+
478
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
479
+
480
+ return output
481
+
482
+
483
+ def _find_mha_dims(
484
+ config: PretrainedConfig,
485
+ n_head: Optional[int] = None,
486
+ n_head_kv: Optional[int] = None,
487
+ head_dim: Optional[int] = None,
488
+ ) -> Tuple[int, int]:
489
+ if n_head is None and head_dim is None:
490
+ head_dim = config.n_embd // config.n_head
491
+ n_head = config.n_head
492
+ elif n_head is None or head_dim is None:
493
+ raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
494
+
495
+ if n_head_kv is None:
496
+ n_head_kv = getattr(config, "n_head_kv", None) or n_head
497
+
498
+ return n_head, n_head_kv, head_dim
499
+
500
+
501
+ def _update_kv_cache(
502
+ kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int
503
+ ) -> torch.FloatTensor:
504
+ num_heads, head_dim = kv.shape[-2:]
505
+
506
+ if layer_idx not in inference_params.key_value_memory_dict:
507
+ inference_params.key_value_memory_dict[layer_idx] = torch.empty(
508
+ inference_params.max_batch_size,
509
+ inference_params.max_seqlen,
510
+ 2,
511
+ num_heads,
512
+ head_dim,
513
+ dtype=kv.dtype,
514
+ device=kv.device,
515
+ )
516
+
517
+ batch_start = inference_params.batch_size_offset
518
+ batch_end = batch_start + kv.shape[0]
519
+
520
+ sequence_start = inference_params.seqlen_offset
521
+ sequence_end = sequence_start + kv.shape[1]
522
+
523
+ # When the current sequence length is equal to or larger than the maximum sequence length,
524
+ # we need to concatenate the current `kv` with the cached `kv` to expand its length
525
+ if sequence_end >= inference_params.max_seqlen:
526
+ inference_params.key_value_memory_dict[layer_idx] = torch.concatenate(
527
+ (inference_params.key_value_memory_dict[layer_idx], kv), dim=1
528
+ )
529
+
530
+ inference_params.key_value_memory_dict[layer_idx][
531
+ batch_start:batch_end, sequence_start:sequence_end, ...
532
+ ] = kv
533
+ kv = inference_params.key_value_memory_dict[layer_idx][
534
+ batch_start:batch_end, :sequence_end, ...
535
+ ]
536
+
537
+ return kv
538
+
539
+
540
+ class MHA(nn.Module):
541
+ """Multi-head attention layer."""
542
+
543
+ def __init__(
544
+ self,
545
+ config: PretrainedConfig,
546
+ dtype: Optional[torch.dtype] = None,
547
+ device: Optional[str] = None,
548
+ rotary_dim: Optional[int] = None,
549
+ rotary_base: float = 10000.0,
550
+ rotary_scale_base: Optional[float] = None,
551
+ n_head: Optional[int] = None,
552
+ n_head_kv: Optional[int] = None,
553
+ head_dim: Optional[int] = None,
554
+ bias: bool = True,
555
+ causal: bool = True,
556
+ softmax_scale: Optional[float] = None,
557
+ layer_idx: Optional[int] = None,
558
+ return_residual: bool = False,
559
+ checkpointing: bool = False,
560
+ ) -> None:
561
+ super().__init__()
562
+
563
+ # Rotary embedding
564
+ self.rotary_dim = (
565
+ rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
566
+ )
567
+ if self.rotary_dim > 0:
568
+ rotary_cls = (
569
+ FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
570
+ )
571
+ if rotary_cls is None:
572
+ rotary_cls = RotaryEmbedding
573
+
574
+ rotary_kwargs = {}
575
+ if rotary_cls is RotaryEmbedding:
576
+ rotary_kwargs["max_position_embeddings"] = config.n_positions
577
+
578
+ self.rotary_emb = rotary_cls(
579
+ self.rotary_dim,
580
+ base=rotary_base,
581
+ scale_base=rotary_scale_base,
582
+ device=device,
583
+ **rotary_kwargs,
584
+ )
585
+
586
+ # MLP
587
+ self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
588
+ config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
589
+ )
590
+ op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
591
+ hidden_size = config.n_embd
592
+
593
+ linear_cls = FusedDense if config.fused_dense else nn.Linear
594
+ if linear_cls is None:
595
+ linear_cls = nn.Linear
596
+
597
+ self.Wqkv = linear_cls(
598
+ hidden_size, op_size, bias=bias, device=device, dtype=dtype
599
+ )
600
+ self.out_proj = linear_cls(
601
+ hidden_size, hidden_size, bias=bias, device=device, dtype=dtype
602
+ )
603
+
604
+ # Attention
605
+ attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
606
+ if attn_cls is None:
607
+ attn_cls = SelfAttention
608
+
609
+ cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
610
+ if cross_attn_cls is None:
611
+ cross_attn_cls = CrossAttention
612
+
613
+ self.inner_attn = attn_cls(
614
+ causal=causal,
615
+ softmax_scale=softmax_scale,
616
+ attention_dropout=config.attn_pdrop,
617
+ )
618
+ self.inner_cross_attn = cross_attn_cls(
619
+ causal=causal,
620
+ softmax_scale=softmax_scale,
621
+ attention_dropout=config.attn_pdrop,
622
+ )
623
+
624
+ self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
625
+ self.layer_idx = layer_idx
626
+ self.return_residual = return_residual
627
+ self.checkpointing = checkpointing
628
+
629
+ def _forward_self_attn(
630
+ self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
631
+ ) -> torch.FloatTensor:
632
+ qkv = self.Wqkv(x)
633
+ qkv = rearrange(
634
+ qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim
635
+ )
636
+
637
+ if self.rotary_dim > 0:
638
+ qkv = self.rotary_emb(qkv)
639
+
640
+ if self.flash_attn:
641
+ batch_size, seqlen = qkv.shape[0], qkv.shape[1]
642
+
643
+ cu_seqlens, max_seqlen = None, None
644
+ if key_padding_mask is not None:
645
+ # If `key_padding_mask` is supplied, we need to unpad the input and retrieve
646
+ # the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
647
+ qkv, indices, cu_seqlens, max_seqlen = unpad_input(
648
+ qkv, key_padding_mask
649
+ )
650
+
651
+ if self.checkpointing:
652
+ attn_output = torch.utils.checkpoint.checkpoint(
653
+ self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
654
+ )
655
+ else:
656
+ attn_output = self.inner_attn(
657
+ qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
658
+ ).to(qkv.device)
659
+
660
+ # If `key_padding_mask` is supplied, we need to pad the output back to the original shape
661
+ return (
662
+ pad_input(attn_output, indices, batch_size, seqlen)
663
+ if key_padding_mask is not None
664
+ else attn_output
665
+ )
666
+
667
+ if self.checkpointing:
668
+ return torch.utils.checkpoint.checkpoint(
669
+ self.inner_attn, qkv, key_padding_mask=key_padding_mask
670
+ )
671
+
672
+ return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
673
+
674
+ def _forward_cross_attn(
675
+ self,
676
+ x: torch.FloatTensor,
677
+ past_key_values: Optional[InferenceParams],
678
+ key_padding_mask: Optional[torch.BoolTensor],
679
+ ) -> torch.FloatTensor:
680
+ batch_size = x.shape[0]
681
+
682
+ qkv = self.Wqkv(x)
683
+
684
+ q = qkv[..., : self.n_head * self.head_dim]
685
+ q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
686
+
687
+ kv = qkv[..., self.n_head * self.head_dim :]
688
+ kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
689
+
690
+ seqlen_offset = (
691
+ past_key_values.seqlen_offset if past_key_values is not None else 0
692
+ )
693
+ causal = None if seqlen_offset == 0 else False
694
+ if self.rotary_dim > 0:
695
+ q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
696
+
697
+ if past_key_values is not None:
698
+ kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
699
+
700
+ if self.flash_attn:
701
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
702
+ seqlen_k = kv.shape[1]
703
+
704
+ cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = (
705
+ None,
706
+ None,
707
+ None,
708
+ None,
709
+ )
710
+ if key_padding_mask is not None:
711
+ kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
712
+
713
+ if seqlen_q == 1:
714
+ key_padding_mask = torch.ones(batch_size, 1, device=q.device)
715
+ elif seqlen_q != seqlen_k:
716
+ key_padding_mask = key_padding_mask[:, -seqlen_q:]
717
+
718
+ q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(
719
+ q, key_padding_mask
720
+ )
721
+
722
+ if self.checkpointing:
723
+ attn_output = torch.utils.checkpoint.checkpoint(
724
+ self.inner_cross_attn,
725
+ q,
726
+ kv,
727
+ causal=causal,
728
+ cu_seqlens=cu_seqlens_q,
729
+ max_seqlen=max_seqlen_q,
730
+ cu_seqlens_k=cu_seqlens_k,
731
+ max_seqlen_k=max_seqlen_k,
732
+ )
733
+ else:
734
+ attn_output = self.inner_cross_attn(
735
+ q,
736
+ kv,
737
+ causal=causal,
738
+ cu_seqlens=cu_seqlens_q,
739
+ max_seqlen=max_seqlen_q,
740
+ cu_seqlens_k=cu_seqlens_k,
741
+ max_seqlen_k=max_seqlen_k,
742
+ )
743
+
744
+ return (
745
+ pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
746
+ if key_padding_mask is not None
747
+ else attn_output
748
+ )
749
+
750
+ if self.checkpointing:
751
+ return torch.utils.checkpoint.checkpoint(
752
+ self.inner_cross_attn,
753
+ q,
754
+ kv,
755
+ key_padding_mask=key_padding_mask,
756
+ causal=causal,
757
+ )
758
+
759
+ return self.inner_cross_attn(
760
+ q, kv, key_padding_mask=key_padding_mask, causal=causal
761
+ )
762
+
763
+ def forward(
764
+ self,
765
+ x: torch.FloatTensor,
766
+ past_key_values: Optional[InferenceParams] = None,
767
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
768
+ **kwargs,
769
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
770
+ if attention_mask is not None:
771
+ attention_mask = attention_mask.bool()
772
+ else:
773
+ attention_mask = None
774
+
775
+ # MHA
776
+ if self.n_head == self.n_head_kv:
777
+ if past_key_values is None:
778
+ # If `past_key_values` are not supplied, we run self-attention
779
+ attn_output = self._forward_self_attn(x, attention_mask)
780
+ else:
781
+ # If `past_key_values` are supplied, it means that we might have cached values and
782
+ # could take advantage of cross-attention
783
+ attn_output = self._forward_cross_attn(
784
+ x, past_key_values, attention_mask
785
+ )
786
+ # MQA / GQA
787
+ else:
788
+ # Regardless of `past_key_values` being supplied or not, it always use cross-attention
789
+ # because `q` and `kv` lengths might be different
790
+ attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
791
+
792
+ output = rearrange(attn_output, "... h d -> ... (h d)")
793
+ output = self.out_proj(output)
794
+
795
+ return output if not self.return_residual else (output, x)
796
+
797
+
798
+ class ParallelBlock(nn.Module):
799
+ """Parallel block.
800
+
801
+ This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
802
+
803
+ """
804
+
805
+ def __init__(
806
+ self,
807
+ config: PretrainedConfig,
808
+ block_idx: Optional[int] = None,
809
+ ) -> None:
810
+ super().__init__()
811
+
812
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
813
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
814
+ self.block_idx = block_idx
815
+
816
+ self.mixer = MHA(config, layer_idx=block_idx)
817
+ self.mlp = MLP(config)
818
+
819
+ def forward(
820
+ self,
821
+ hidden_states: torch.FloatTensor,
822
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
823
+ attention_mask: Optional[torch.BoolTensor] = None,
824
+ **kwargs,
825
+ ) -> torch.FloatTensor:
826
+ residual = hidden_states
827
+ hidden_states = self.ln(hidden_states)
828
+
829
+ attn_outputs = self.mixer(
830
+ hidden_states,
831
+ past_key_values=past_key_values,
832
+ attention_mask=attention_mask,
833
+ )
834
+ if isinstance(attn_outputs, tuple):
835
+ attn_outputs = attn_outputs[0]
836
+
837
+ attn_outputs = self.resid_dropout(attn_outputs)
838
+ feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
839
+
840
+ hidden_states = attn_outputs + feed_forward_hidden_states + residual
841
+
842
+ return hidden_states
843
+
844
+
845
+ class CausalLMHead(nn.Module):
846
+ """Causal Language Modeling head.
847
+
848
+ Reference:
849
+ Improving Language Understanding by Generative Pre-Training.
850
+ https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
851
+
852
+ """
853
+
854
+ def __init__(self, config: PretrainedConfig) -> None:
855
+ super().__init__()
856
+
857
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
858
+ self.linear = nn.Linear(config.n_embd, config.vocab_size)
859
+
860
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
861
+ hidden_states = self.ln(hidden_states)
862
+ logits = self.linear(hidden_states).to(torch.float32)
863
+
864
+ return logits
865
+
866
+
867
+ class CausalLMLoss(nn.Module):
868
+ """Causal Language Modeling loss.
869
+
870
+ Reference:
871
+ Improving Language Understanding by Generative Pre-Training.
872
+ https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
873
+
874
+ """
875
+
876
+ def __init__(self, shift_labels: bool = True) -> None:
877
+ super().__init__()
878
+
879
+ self.shift_labels = shift_labels
880
+ self.loss_fct = nn.CrossEntropyLoss()
881
+
882
+ def forward(
883
+ self, logits: torch.FloatTensor, labels: torch.LongTensor
884
+ ) -> torch.FloatTensor:
885
+ if self.shift_labels:
886
+ logits = logits[..., :-1, :].contiguous()
887
+ labels = labels[..., 1:].contiguous()
888
+
889
+ loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
890
+
891
+ return loss
892
+
893
+
894
+ class PhiPreTrainedModel(PreTrainedModel):
895
+ """Phi pre-trained model."""
896
+
897
+ config_class = PhiConfig
898
+ base_model_prefix = "transformer"
899
+ supports_gradient_checkpointing = False
900
+ _no_split_modules = ["ParallelBlock"]
901
+
902
+ def __init__(self, *inputs, **kwargs) -> None:
903
+ super().__init__(*inputs, **kwargs)
904
+
905
+ def _init_weights(self, module: nn.Module) -> None:
906
+ if isinstance(module, (nn.Linear,)):
907
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
908
+ if module.bias is not None:
909
+ module.bias.data.zero_()
910
+ elif isinstance(module, nn.Embedding):
911
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
912
+ if module.padding_idx is not None:
913
+ module.weight.data[module.padding_idx].zero_()
914
+ elif isinstance(module, nn.LayerNorm):
915
+ if module.bias is not None:
916
+ module.bias.data.zero_()
917
+ module.weight.data.fill_(1.0)
918
+
919
+ def prepare_inputs_for_generation(
920
+ self,
921
+ input_ids: torch.LongTensor,
922
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
923
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
924
+ **kwargs,
925
+ ) -> Dict[str, Any]:
926
+ if past_key_values is None or not (
927
+ isinstance(past_key_values, InferenceParams)
928
+ ):
929
+ past_key_values = InferenceParams(
930
+ max_seqlen=self.config.n_positions,
931
+ max_batch_size=input_ids.shape[0],
932
+ seqlen_offset=0,
933
+ batch_size_offset=0,
934
+ key_value_memory_dict={},
935
+ lengths_per_sample=None,
936
+ )
937
+ else:
938
+ # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
939
+ past_key_values.seqlen_offset = input_ids.shape[1] - 1
940
+ input_ids = input_ids[:, -1].unsqueeze(-1)
941
+ attention_mask = attention_mask[:, -1].unsqueeze(-1)
942
+
943
+ return {
944
+ "input_ids": input_ids,
945
+ "past_key_values": past_key_values,
946
+ "attention_mask": attention_mask,
947
+ }
948
+
949
+
950
+ class PhiModel(PhiPreTrainedModel):
951
+ """Phi model."""
952
+
953
+ _keys_to_ignore_on_load_missing = [""]
954
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
955
+
956
+ def __init__(self, config: PhiConfig) -> None:
957
+ super().__init__(config)
958
+
959
+ self.embd = Embedding(config)
960
+ self.h = nn.ModuleList(
961
+ [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
962
+ )
963
+ self.gradient_checkpointing = False
964
+ self.post_init()
965
+
966
+ def get_input_embeddings(self):
967
+ return self.embd
968
+
969
+ def set_input_embeddings(self, new_embeddings) -> None:
970
+ self.embd.wte = new_embeddings
971
+
972
+ def forward(
973
+ self,
974
+ input_ids: torch.LongTensor,
975
+ inputs_embeds: Optional[torch.FloatTensor] = None,
976
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
977
+ attention_mask: Optional[torch.BoolTensor] = None,
978
+ ) -> torch.FloatTensor:
979
+ if input_ids is not None:
980
+ hidden_states = self.embd(input_ids)
981
+ elif inputs_embeds is not None:
982
+ hidden_states = inputs_embeds
983
+ else:
984
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
985
+
986
+ for layer in self.h:
987
+ hidden_states = layer(
988
+ hidden_states,
989
+ past_key_values=past_key_values,
990
+ attention_mask=attention_mask,
991
+ )
992
+
993
+ return hidden_states
994
+
995
+
996
+ class PhiForCausalLM(PhiPreTrainedModel):
997
+ """Phi for Causal Language Modeling."""
998
+
999
+ _keys_to_ignore_on_load_missing = [""]
1000
+ _keys_to_ignore_on_load_unexpected = [
1001
+ r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"
1002
+ ]
1003
+
1004
+ supports_gradient_checkpointing = True
1005
+ _no_split_modules = ["ParallelBlock"]
1006
+ _skip_keys_device_placement = "past_key_values"
1007
+
1008
+ def __init__(self, config: PhiConfig) -> None:
1009
+ super().__init__(config)
1010
+
1011
+ self.transformer = PhiModel(config)
1012
+ self.lm_head = CausalLMHead(config)
1013
+ self.loss = CausalLMLoss()
1014
+
1015
+ self.post_init()
1016
+
1017
+ def get_output_embeddings(self):
1018
+ return self.lm_head
1019
+
1020
+ def set_output_embeddings(self, new_embeddings) -> None:
1021
+ self.lm_head.linear = new_embeddings
1022
+
1023
+ def forward(
1024
+ self,
1025
+ input_ids: torch.LongTensor,
1026
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1027
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
1028
+ attention_mask: Optional[torch.BoolTensor] = None,
1029
+ labels: Optional[torch.LongTensor] = None,
1030
+ **kwargs,
1031
+ ) -> CausalLMOutputWithPast:
1032
+ hidden_states = self.transformer(
1033
+ input_ids,
1034
+ inputs_embeds=inputs_embeds,
1035
+ past_key_values=past_key_values,
1036
+ attention_mask=attention_mask,
1037
+ )
1038
+ lm_logits = self.lm_head(hidden_states)
1039
+
1040
+ loss = None
1041
+ if labels is not None:
1042
+ loss = self.loss(lm_logits, labels)
1043
+
1044
+ return CausalLMOutputWithPast(
1045
+ loss=loss, logits=lm_logits, past_key_values=past_key_values
1046
+ )
1047
 
1048
 
1049
  @dataclass