|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
from transformers import SiglipVisionConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class PhiConfig(PretrainedConfig): |
|
model_type = "phi" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=51200, |
|
hidden_size=2048, |
|
intermediate_size=8192, |
|
num_hidden_layers=24, |
|
num_attention_heads=32, |
|
num_key_value_heads=None, |
|
resid_pdrop=0.0, |
|
embd_pdrop=0.0, |
|
attention_dropout=0.0, |
|
hidden_act="gelu_new", |
|
max_position_embeddings=2048, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-5, |
|
use_cache=True, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
partial_rotary_factor=0.5, |
|
qk_layernorm=False, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attention_dropout = attention_dropout |
|
self.hidden_act = hidden_act |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.partial_rotary_factor = partial_rotary_factor |
|
self.qk_layernorm = qk_layernorm |
|
self._rope_scaling_validation() |
|
|
|
super().__init__( |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " |
|
f"got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_factor = self.rope_scaling.get("factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: |
|
raise ValueError( |
|
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" |
|
) |
|
if ( |
|
rope_scaling_factor is None |
|
or not isinstance(rope_scaling_factor, float) |
|
or rope_scaling_factor <= 1.0 |
|
): |
|
raise ValueError( |
|
f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}" |
|
) |
|
|
|
|
|
class LlavaConfig(PretrainedConfig): |
|
model_type = "mc-llava" |
|
is_composition = False |
|
|
|
def __init__( |
|
self, |
|
text_config=None, |
|
vision_config=None, |
|
ignore_index=-100, |
|
image_token_index=50297, |
|
projector_hidden_act="gelu", |
|
projector_tokens_num=1, |
|
vocab_size=51200, |
|
**kwargs, |
|
): |
|
self.ignore_index = ignore_index |
|
self.image_token_index = image_token_index |
|
self.projector_hidden_act = projector_hidden_act |
|
self.projector_tokens_num = projector_tokens_num |
|
self.vocab_size = vocab_size |
|
|
|
self.text_config = text_config |
|
if isinstance(self.text_config, dict): |
|
text_config["model_type"] = ( |
|
text_config["model_type"] if "model_type" in text_config else "phi" |
|
) |
|
self.text_config = PhiConfig(**text_config) |
|
self.vocab_size = self.text_config.vocab_size |
|
|
|
self.vision_config = vision_config |
|
if isinstance(self.vision_config, dict): |
|
self.vision_config = SiglipVisionConfig(**vision_config) |
|
self.vision_embed_dim = self.vision_config.hidden_size |
|
|
|
super().__init__(**kwargs) |
|
|