Upload 4 files
Browse files- MolE-XGBoost-08.03.2024_14.20.pkl +3 -0
- README.md +22 -3
- config.yaml +28 -0
- model.pth +3 -0
MolE-XGBoost-08.03.2024_14.20.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e66874f9019beab0eb02378893c064d63d34df3482f8f6f0495d144597e972d0
|
| 3 |
+
size 10210090
|
README.md
CHANGED
|
@@ -1,3 +1,22 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MolE - Antimicrobial Prediction
|
| 2 |
+
|
| 3 |
+
This model uses MolE's pre-trained representation to train XGBoost models to predict the antimicrobial activity of compounds based on their molecular structure.
|
| 4 |
+
|
| 5 |
+
## Files:
|
| 6 |
+
|
| 7 |
+
- `model.pth` - the pre-trained representation model's weights
|
| 8 |
+
- `config.yaml` - model configuration
|
| 9 |
+
- `MolE-XGBoost-08.03.2024_14.20.pkl` - pretrained XGBoost model
|
| 10 |
+
|
| 11 |
+
## Usage
|
| 12 |
+
|
| 13 |
+
Not ready yet.
|
| 14 |
+
|
| 15 |
+
## Publication
|
| 16 |
+
For more information about MolE, and how we use it to predict antimicrobial activity, you can check out the paper in Nature Communications:
|
| 17 |
+
[**Pre-trained molecular representations enable antimicrobial discovery**](https://www.nature.com/articles/s41467-025-58804-4)
|
| 18 |
+
|
| 19 |
+
## GitHub
|
| 20 |
+
|
| 21 |
+
The code is available here:
|
| 22 |
+
[**Link to GitHub repo**](https://github.com/rolayoalarcon/mole_antimicrobial_potential)
|
config.yaml
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
batch_size: 1000 # batch size
|
| 2 |
+
warm_up: 10 # warm-up epochs
|
| 3 |
+
epochs: 1000 # total number of epochs
|
| 4 |
+
|
| 5 |
+
load_model: None # resume training
|
| 6 |
+
eval_every_n_epochs: 1 # validation frequency
|
| 7 |
+
save_every_n_epochs: 5 # automatic model saving frequecy
|
| 8 |
+
|
| 9 |
+
fp16_precision: False # float precision 16 (i.e. True/False)
|
| 10 |
+
init_lr: 0.0005 # initial learning rate for Adam
|
| 11 |
+
weight_decay: 1e-5 # weight decay for Adam
|
| 12 |
+
gpu: cuda:0 # training GPU
|
| 13 |
+
|
| 14 |
+
model_type: gin_concat # GNN backbone (i.e., gin/gcn)
|
| 15 |
+
model:
|
| 16 |
+
num_layer: 5 # number of graph conv layers
|
| 17 |
+
emb_dim: 200 # embedding dimension in graph conv layers
|
| 18 |
+
feat_dim: 8000 # output feature dimention
|
| 19 |
+
drop_ratio: 0.0 # dropout ratio
|
| 20 |
+
pool: add # readout pooling (i.e., mean/max/add)
|
| 21 |
+
|
| 22 |
+
dataset:
|
| 23 |
+
num_workers: 50 # dataloader number of workers
|
| 24 |
+
valid_size: 0.1 # ratio of validation data
|
| 25 |
+
data_path: data/pubchem_data/pubchem_100k_random.txt # path of pre-training data
|
| 26 |
+
|
| 27 |
+
loss:
|
| 28 |
+
l: 0.0001 # Lambda parameter
|
model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d324644c5f43e7be6734a9cd7a7966f975bfcc113610c13be897d11674defd8
|
| 3 |
+
size 803807667
|