Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1625.64 +/- 176.51
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b6348167fb166edce3ced8b56a7bba8d12e0d4c5480d816de45ad3e07ec345d
|
3 |
+
size 129264
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a57209510>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a572095a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a57209630>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a572096c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9a57209750>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9a572097e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a57209870>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a57209900>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9a57209990>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a57209a20>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a57209ab0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a57209b40>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9a0f881040>"
|
21 |
+
},
|
22 |
+
"verbose": 0,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 1556000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1685443798428119352,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAE3Ggb6Duwm9944PP7Bm3z4s3dI/FLymPre4eD/moAW/ZjkVP4fHUL2AT2s/cB00Pw+lID9/FuC/XnF2Pi4cxL/mLGU/HEJrvz2oWT+b6Js/o/IxP2cBMT/VoiO/5nIPvi2Lcj84D7+/SLnZPj77j7/sMtM+MYEOv4wUFj/ac1g/nwErP8hNez9xhCs/YcaUPsRgFD8N7UO9lKGwvtcRE8DBjIM8kGCLP69cjb+F2Bg/WoqjP1FFqj8jaxK9kmjsv/aoPz/dxwI/lLUuPaUI1D75GYe/v4ErP0i52T4++4+/WSOwvoNoGT39MQo/vLQbPxmpkr4LNqe+DDmKPVv9cD/2pxY/sBSKPeS9Kb4Nh7Y+YyPFvS+1f7+pHuO+ZlsuwKHLcz8iUpa+bWKbvoWSCT/Q1UM9L0PgP5U4Hb/7yRDALYtyP7+BKz+sgBbAPvuPv5zLjz6iqQo/QWOGPlv++z5BMSu/7p7kPGw1Nr51W8C+sOIYP/t3NL2aLMc+sp+oPonqDr93LCW/+/H3PDsbNb8vDJ8+K9pov/KXD75GeSQ/La2svH9lrz/S0ns+FQ8mv/kZh7+/gSs/SLnZPj77j7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABaOny2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1BFDPQAAAABeHQDAAAAAAAyrlL0AAAAAyo7uPwAAAADoSam8AAAAAA/12z8AAAAAUpe5PAAAAADcYPi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg2hMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAiW9T0AAAAACLbovwAAAABJC0U9AAAAAIw19j8AAAAAvjXxPQAAAACrH/M/AAAAABWysb0AAAAAEkv3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGcDv7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICkTcw7AAAAAAy04r8AAAAAB4hkPAAAAAB9Vtk/AAAAAIYm7b0AAAAANBf+PwAAAADE6QE+AAAAAEDG/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKFY22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYxfnPQAAAADlpvC/AAAAAMbX6TwAAAAAT+f6PwAAAADCDt69AAAAADrMAEAAAAAAeFFGvAAAAAAgb+2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.22199999999999998,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJx7IV8CxNaMAWyUTegDjAF0lEdAqCbwEQoTf3V9lChoBkdAm+JSj59E1GgHTegDaAhHQKgorduYQat1fZQoaAZHQJ8V0tPHktFoB03oA2gIR0CoKNrksBhhdX2UKGgGR0CbBYed07r+aAdN6ANoCEdAqCwEg4ffXXV9lChoBkdAnlvQMlTm4mgHTegDaAhHQKgzg18b70p1fZQoaAZHQKDSM9/z8P5oB03oA2gIR0CoNTgkka/AdX2UKGgGR0Cc7kXHim2taAdN6ANoCEdAqDVshaC+UXV9lChoBkdAjcv85CF9KGgHTegDaAhHQKg6CJCSidt1fZQoaAZHQJ0PvPZ7HABoB03oA2gIR0CoQ9+CbtqpdX2UKGgGR0CYJswRXfZVaAdN6ANoCEdAqEWbAUL2H3V9lChoBkdAmMGabz9S/GgHTegDaAhHQKhFx5BTn7p1fZQoaAZHQJ6bqTcIqsloB03oA2gIR0CoSO+fRNRFdX2UKGgGR0Ce084Y77sOaAdN6ANoCEdAqFBRTQ3PzHV9lChoBkdAlC0QKOT7mGgHTegDaAhHQKhSD6VMVUN1fZQoaAZHQJfxZDmbLEFoB03oA2gIR0CoUjy+HrQgdX2UKGgGR0CQ17AnDziCaAdN6ANoCEdAqFXMn3L3bnV9lChoBkdAoAYLfgrH2mgHTegDaAhHQKhgfanrIHV1fZQoaAZHQKAKKLDye7NoB03oA2gIR0CoYj3uuzQedX2UKGgGR0CZg7EVFhG6aAdN6ANoCEdAqGJuRxLkCHV9lChoBkdAlsl33QD3d2gHTegDaAhHQKhltUxVQyh1fZQoaAZHQJodr2wmmchoB03oA2gIR0CobT74SHuadX2UKGgGR0CW4HcgyM1kaAdN6ANoCEdAqG70RBeHBXV9lChoBkdAmmKoBq9GqmgHTegDaAhHQKhvJbHIZIh1fZQoaAZHQJi/SNuLrHFoB03oA2gIR0Cock5A6dUbdX2UKGgGR0CYARx/d69kaAdN6ANoCEdAqH0cr08NhHV9lChoBkdAc1BSmZVn3GgHTegDaAhHQKh/Mma6ST11fZQoaAZHQJju8eDFqBVoB03oA2gIR0Cof18VpKzzdX2UKGgGR0CSdhEG7jDLaAdN6ANoCEdAqIJytDD0lXV9lChoBkdAmn9pVn27F2gHTegDaAhHQKiJ6butwJh1fZQoaAZHQJstBU2kzoFoB03oA2gIR0Coi6LLpzLfdX2UKGgGR0CRs7UX531SaAdN6ANoCEdAqIvPwZwXInV9lChoBkdAlEfVm8M/hWgHTegDaAhHQKiO4LpiZv11fZQoaAZHQJ6z7jo6jnFoB03oA2gIR0ComDJEH+qBdX2UKGgGR0Cal8bvw3HaaAdN6ANoCEdAqJrMdT5wfnV9lChoBkdAnPH8cABDHGgHTegDaAhHQKibEcy31Bd1fZQoaAZHQJedU1O0svtoB03oA2gIR0Conr43vQWvdX2UKGgGR0CXB4/5ckdFaAdN6ANoCEdAqKY9DBuXNXV9lChoBkdAlDBrwjMV12gHTegDaAhHQKin9vuPV/d1fZQoaAZHQJZfW86FM7FoB03oA2gIR0CoqCPwd8zAdX2UKGgGR0CP3fUnXumaaAdN6ANoCEdAqKtWfAbhnHV9lChoBkdAk8klBQemvWgHTegDaAhHQKizf85S3sp1fZQoaAZHQJw7dOXVsk9oB03oA2gIR0CotgPJA+pwdX2UKGgGR0CcZehaTwDvaAdN6ANoCEdAqLZJUkv9L3V9lChoBkdAnfbZFG5MDmgHTegDaAhHQKi7PhGYrrh1fZQoaAZHQJmm8lu3trtoB03oA2gIR0CowvQZOzppdX2UKGgGR0CakNulGgBcaAdN6ANoCEdAqMSsZzgdfnV9lChoBkdAncWLOmixmmgHTegDaAhHQKjE2Qmu1Wt1fZQoaAZHQJv9JHJ9y95oB03oA2gIR0Cox/YaxX4kdX2UKGgGR0Cfqm/fO2RaaAdN6ANoCEdAqM+FEy+HrXV9lChoBkdAnkZgDmr8zmgHTegDaAhHQKjR6ZsKsuF1fZQoaAZHQJnXniWE9MdoB03oA2gIR0Co0io7Njb0dX2UKGgGR0CgY3ZIQOFyaAdN6ANoCEdAqNbvkWAPNHV9lChoBkdAmmc/+sHSnmgHTegDaAhHQKjfuI5YHPh1fZQoaAZHQJ9oRzKcNH9oB03oA2gIR0Co4WyzXz19dX2UKGgGR0CcKKjcmBvraAdN6ANoCEdAqOGaXKKYRnV9lChoBkdAmesj0UXYUWgHTegDaAhHQKjksX7+DOF1fZQoaAZHQJYq9JCjUNNoB03oA2gIR0Co7CU7Sy+pdX2UKGgGR0CcEeYcNpdsaAdN6ANoCEdAqO3QiC8OC3V9lChoBkdAmfmAmReTmmgHTegDaAhHQKjt/ZVXFLp1fZQoaAZHQJrI1p22XsxoB03oA2gIR0Co8jQMH8jzdX2UKGgGR0CXx/fZElVtaAdN6ANoCEdAqPxgEU0vXnV9lChoBkdAlUPxhhH9WWgHTegDaAhHQKj+G/u9eyB1fZQoaAZHQJaXUY77sOZoB03oA2gIR0Co/ktorWiDdX2UKGgGR0CXZeCm/FisaAdN6ANoCEdAqQFvYxtYS3V9lChoBkdAm8loXoC+12gHTegDaAhHQKkI7aDf3vh1fZQoaAZHQJ/0DI2fkFRoB03oA2gIR0CpCqnqu8sddX2UKGgGR0CZPzRvFWGRaAdN6ANoCEdAqQrZPfsNUnV9lChoBkdAmu9zkdV/+mgHTegDaAhHQKkON1bJOnF1fZQoaAZHQJ9+ZiUgSvloB03oA2gIR0CpGSTollbvdX2UKGgGR0CfGWZ4wAU+aAdN6ANoCEdAqRroRIz3y3V9lChoBkdAm3wb/n4fwWgHTegDaAhHQKkbFr30wrV1fZQoaAZHQKAipHLA57xoB03oA2gIR0CpHjgKfFrEdX2UKGgGR0CZFLddmg8KaAdN6ANoCEdAqSXIIOYplXV9lChoBkdAl7GX4XXRPWgHTegDaAhHQKknoBWgezV1fZQoaAZHQJapVSEUTL5oB03oA2gIR0CpJ85UDMePdX2UKGgGR0CaHP2l2vB8aAdN6ANoCEdAqSr4tlI3BHV9lChoBkdAnRlDxG2CumgHTegDaAhHQKk1s/sVtXR1fZQoaAZHQJt96PS2H+JoB03oA2gIR0CpOAQ4CIUKdX2UKGgGR0CZfaPNFBppaAdN6ANoCEdAqTgwDNhVl3V9lChoBkdAlarUZ3s5XGgHTegDaAhHQKk7PF85S3t1fZQoaAZHQJz5gsasIVxoB03oA2gIR0CpQsBxxT86dX2UKGgGR0CXU/d1dPcjaAdN6ANoCEdAqUR2UMXrMXV9lChoBkdAl00htP557mgHTegDaAhHQKlEtHpbD/F1fZQoaAZHQI9O947ihnJoB03oA2gIR0CpSUmWD6FedX2UKGgGR0CVP4yu6mO3aAdN6ANoCEdAqVX032mHg3V9lChoBkdAkl333+MqBmgHTegDaAhHQKlY1Dpkf9x1fZQoaAZHQI0EKrDIikhoB03oA2gIR0CpWRxFRYRvdX2UKGgGR0CaltbFjurqaAdN6ANoCEdAqVxpybQTmHV9lChoBkdAmgpQy/KyOmgHTegDaAhHQKlj9Jz1bq11fZQoaAZHQJoP1MYdhiNoB03oA2gIR0CpZbb961LKdX2UKGgGR0Cb9EYq5LAYaAdN6ANoCEdAqWXkRUWEb3V9lChoBkdAlLBBj4Hoo2gHTegDaAhHQKlpBEit7rt1fZQoaAZHQJfnNRm9QGhoB03oA2gIR0Cpccs6BAfMdX2UKGgGR0CdPkRzijtYaAdN6ANoCEdAqXRekLx7RnV9lChoBkdAnHAWSEDhcmgHTegDaAhHQKl0obiIcip1fZQoaAZHQJ6aFOTJQtVoB03oA2gIR0CpeQP3ztkXdX2UKGgGR0CZ9wU4rBj4aAdN6ANoCEdAqYCBMSK3u3V9lChoBkdAmVb8sxwhn2gHTegDaAhHQKmCQ6T4cm11fZQoaAZHQJ6FHNqxkd5oB03oA2gIR0CpgnLyUcGUdX2UKGgGR0CehlVPva11aAdN6ANoCEdAqYWdlf7aZnVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 48624,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe5c44dd2bea01f510be555c293021e0d1972bda3821beef56cfb4893e79861f
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32c5cfb8b8df15e7619f1c15bbf34eb81b98ef077cec4b07a8261bd18f2c682c
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a57209510>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a572095a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a57209630>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a572096c0>", "_build": "<function ActorCriticPolicy._build at 0x7f9a57209750>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a572097e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a57209870>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a57209900>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a57209990>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a57209a20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a57209ab0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a57209b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9a0f881040>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1556000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685443798428119352, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAE3Ggb6Duwm9944PP7Bm3z4s3dI/FLymPre4eD/moAW/ZjkVP4fHUL2AT2s/cB00Pw+lID9/FuC/XnF2Pi4cxL/mLGU/HEJrvz2oWT+b6Js/o/IxP2cBMT/VoiO/5nIPvi2Lcj84D7+/SLnZPj77j7/sMtM+MYEOv4wUFj/ac1g/nwErP8hNez9xhCs/YcaUPsRgFD8N7UO9lKGwvtcRE8DBjIM8kGCLP69cjb+F2Bg/WoqjP1FFqj8jaxK9kmjsv/aoPz/dxwI/lLUuPaUI1D75GYe/v4ErP0i52T4++4+/WSOwvoNoGT39MQo/vLQbPxmpkr4LNqe+DDmKPVv9cD/2pxY/sBSKPeS9Kb4Nh7Y+YyPFvS+1f7+pHuO+ZlsuwKHLcz8iUpa+bWKbvoWSCT/Q1UM9L0PgP5U4Hb/7yRDALYtyP7+BKz+sgBbAPvuPv5zLjz6iqQo/QWOGPlv++z5BMSu/7p7kPGw1Nr51W8C+sOIYP/t3NL2aLMc+sp+oPonqDr93LCW/+/H3PDsbNb8vDJ8+K9pov/KXD75GeSQ/La2svH9lrz/S0ns+FQ8mv/kZh7+/gSs/SLnZPj77j7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABaOny2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1BFDPQAAAABeHQDAAAAAAAyrlL0AAAAAyo7uPwAAAADoSam8AAAAAA/12z8AAAAAUpe5PAAAAADcYPi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg2hMNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAiW9T0AAAAACLbovwAAAABJC0U9AAAAAIw19j8AAAAAvjXxPQAAAACrH/M/AAAAABWysb0AAAAAEkv3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGcDv7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICkTcw7AAAAAAy04r8AAAAAB4hkPAAAAAB9Vtk/AAAAAIYm7b0AAAAANBf+PwAAAADE6QE+AAAAAEDG/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKFY22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYxfnPQAAAADlpvC/AAAAAMbX6TwAAAAAT+f6PwAAAADCDt69AAAAADrMAEAAAAAAeFFGvAAAAAAgb+2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.22199999999999998, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJx7IV8CxNaMAWyUTegDjAF0lEdAqCbwEQoTf3V9lChoBkdAm+JSj59E1GgHTegDaAhHQKgorduYQat1fZQoaAZHQJ8V0tPHktFoB03oA2gIR0CoKNrksBhhdX2UKGgGR0CbBYed07r+aAdN6ANoCEdAqCwEg4ffXXV9lChoBkdAnlvQMlTm4mgHTegDaAhHQKgzg18b70p1fZQoaAZHQKDSM9/z8P5oB03oA2gIR0CoNTgkka/AdX2UKGgGR0Cc7kXHim2taAdN6ANoCEdAqDVshaC+UXV9lChoBkdAjcv85CF9KGgHTegDaAhHQKg6CJCSidt1fZQoaAZHQJ0PvPZ7HABoB03oA2gIR0CoQ9+CbtqpdX2UKGgGR0CYJswRXfZVaAdN6ANoCEdAqEWbAUL2H3V9lChoBkdAmMGabz9S/GgHTegDaAhHQKhFx5BTn7p1fZQoaAZHQJ6bqTcIqsloB03oA2gIR0CoSO+fRNRFdX2UKGgGR0Ce084Y77sOaAdN6ANoCEdAqFBRTQ3PzHV9lChoBkdAlC0QKOT7mGgHTegDaAhHQKhSD6VMVUN1fZQoaAZHQJfxZDmbLEFoB03oA2gIR0CoUjy+HrQgdX2UKGgGR0CQ17AnDziCaAdN6ANoCEdAqFXMn3L3bnV9lChoBkdAoAYLfgrH2mgHTegDaAhHQKhgfanrIHV1fZQoaAZHQKAKKLDye7NoB03oA2gIR0CoYj3uuzQedX2UKGgGR0CZg7EVFhG6aAdN6ANoCEdAqGJuRxLkCHV9lChoBkdAlsl33QD3d2gHTegDaAhHQKhltUxVQyh1fZQoaAZHQJodr2wmmchoB03oA2gIR0CobT74SHuadX2UKGgGR0CW4HcgyM1kaAdN6ANoCEdAqG70RBeHBXV9lChoBkdAmmKoBq9GqmgHTegDaAhHQKhvJbHIZIh1fZQoaAZHQJi/SNuLrHFoB03oA2gIR0Cock5A6dUbdX2UKGgGR0CYARx/d69kaAdN6ANoCEdAqH0cr08NhHV9lChoBkdAc1BSmZVn3GgHTegDaAhHQKh/Mma6ST11fZQoaAZHQJju8eDFqBVoB03oA2gIR0Cof18VpKzzdX2UKGgGR0CSdhEG7jDLaAdN6ANoCEdAqIJytDD0lXV9lChoBkdAmn9pVn27F2gHTegDaAhHQKiJ6butwJh1fZQoaAZHQJstBU2kzoFoB03oA2gIR0Coi6LLpzLfdX2UKGgGR0CRs7UX531SaAdN6ANoCEdAqIvPwZwXInV9lChoBkdAlEfVm8M/hWgHTegDaAhHQKiO4LpiZv11fZQoaAZHQJ6z7jo6jnFoB03oA2gIR0ComDJEH+qBdX2UKGgGR0Cal8bvw3HaaAdN6ANoCEdAqJrMdT5wfnV9lChoBkdAnPH8cABDHGgHTegDaAhHQKibEcy31Bd1fZQoaAZHQJedU1O0svtoB03oA2gIR0Conr43vQWvdX2UKGgGR0CXB4/5ckdFaAdN6ANoCEdAqKY9DBuXNXV9lChoBkdAlDBrwjMV12gHTegDaAhHQKin9vuPV/d1fZQoaAZHQJZfW86FM7FoB03oA2gIR0CoqCPwd8zAdX2UKGgGR0CP3fUnXumaaAdN6ANoCEdAqKtWfAbhnHV9lChoBkdAk8klBQemvWgHTegDaAhHQKizf85S3sp1fZQoaAZHQJw7dOXVsk9oB03oA2gIR0CotgPJA+pwdX2UKGgGR0CcZehaTwDvaAdN6ANoCEdAqLZJUkv9L3V9lChoBkdAnfbZFG5MDmgHTegDaAhHQKi7PhGYrrh1fZQoaAZHQJmm8lu3trtoB03oA2gIR0CowvQZOzppdX2UKGgGR0CakNulGgBcaAdN6ANoCEdAqMSsZzgdfnV9lChoBkdAncWLOmixmmgHTegDaAhHQKjE2Qmu1Wt1fZQoaAZHQJv9JHJ9y95oB03oA2gIR0Cox/YaxX4kdX2UKGgGR0Cfqm/fO2RaaAdN6ANoCEdAqM+FEy+HrXV9lChoBkdAnkZgDmr8zmgHTegDaAhHQKjR6ZsKsuF1fZQoaAZHQJnXniWE9MdoB03oA2gIR0Co0io7Njb0dX2UKGgGR0CgY3ZIQOFyaAdN6ANoCEdAqNbvkWAPNHV9lChoBkdAmmc/+sHSnmgHTegDaAhHQKjfuI5YHPh1fZQoaAZHQJ9oRzKcNH9oB03oA2gIR0Co4WyzXz19dX2UKGgGR0CcKKjcmBvraAdN6ANoCEdAqOGaXKKYRnV9lChoBkdAmesj0UXYUWgHTegDaAhHQKjksX7+DOF1fZQoaAZHQJYq9JCjUNNoB03oA2gIR0Co7CU7Sy+pdX2UKGgGR0CcEeYcNpdsaAdN6ANoCEdAqO3QiC8OC3V9lChoBkdAmfmAmReTmmgHTegDaAhHQKjt/ZVXFLp1fZQoaAZHQJrI1p22XsxoB03oA2gIR0Co8jQMH8jzdX2UKGgGR0CXx/fZElVtaAdN6ANoCEdAqPxgEU0vXnV9lChoBkdAlUPxhhH9WWgHTegDaAhHQKj+G/u9eyB1fZQoaAZHQJaXUY77sOZoB03oA2gIR0Co/ktorWiDdX2UKGgGR0CXZeCm/FisaAdN6ANoCEdAqQFvYxtYS3V9lChoBkdAm8loXoC+12gHTegDaAhHQKkI7aDf3vh1fZQoaAZHQJ/0DI2fkFRoB03oA2gIR0CpCqnqu8sddX2UKGgGR0CZPzRvFWGRaAdN6ANoCEdAqQrZPfsNUnV9lChoBkdAmu9zkdV/+mgHTegDaAhHQKkON1bJOnF1fZQoaAZHQJ9+ZiUgSvloB03oA2gIR0CpGSTollbvdX2UKGgGR0CfGWZ4wAU+aAdN6ANoCEdAqRroRIz3y3V9lChoBkdAm3wb/n4fwWgHTegDaAhHQKkbFr30wrV1fZQoaAZHQKAipHLA57xoB03oA2gIR0CpHjgKfFrEdX2UKGgGR0CZFLddmg8KaAdN6ANoCEdAqSXIIOYplXV9lChoBkdAl7GX4XXRPWgHTegDaAhHQKknoBWgezV1fZQoaAZHQJapVSEUTL5oB03oA2gIR0CpJ85UDMePdX2UKGgGR0CaHP2l2vB8aAdN6ANoCEdAqSr4tlI3BHV9lChoBkdAnRlDxG2CumgHTegDaAhHQKk1s/sVtXR1fZQoaAZHQJt96PS2H+JoB03oA2gIR0CpOAQ4CIUKdX2UKGgGR0CZfaPNFBppaAdN6ANoCEdAqTgwDNhVl3V9lChoBkdAlarUZ3s5XGgHTegDaAhHQKk7PF85S3t1fZQoaAZHQJz5gsasIVxoB03oA2gIR0CpQsBxxT86dX2UKGgGR0CXU/d1dPcjaAdN6ANoCEdAqUR2UMXrMXV9lChoBkdAl00htP557mgHTegDaAhHQKlEtHpbD/F1fZQoaAZHQI9O947ihnJoB03oA2gIR0CpSUmWD6FedX2UKGgGR0CVP4yu6mO3aAdN6ANoCEdAqVX032mHg3V9lChoBkdAkl333+MqBmgHTegDaAhHQKlY1Dpkf9x1fZQoaAZHQI0EKrDIikhoB03oA2gIR0CpWRxFRYRvdX2UKGgGR0CaltbFjurqaAdN6ANoCEdAqVxpybQTmHV9lChoBkdAmgpQy/KyOmgHTegDaAhHQKlj9Jz1bq11fZQoaAZHQJoP1MYdhiNoB03oA2gIR0CpZbb961LKdX2UKGgGR0Cb9EYq5LAYaAdN6ANoCEdAqWXkRUWEb3V9lChoBkdAlLBBj4Hoo2gHTegDaAhHQKlpBEit7rt1fZQoaAZHQJfnNRm9QGhoB03oA2gIR0Cpccs6BAfMdX2UKGgGR0CdPkRzijtYaAdN6ANoCEdAqXRekLx7RnV9lChoBkdAnHAWSEDhcmgHTegDaAhHQKl0obiIcip1fZQoaAZHQJ6aFOTJQtVoB03oA2gIR0CpeQP3ztkXdX2UKGgGR0CZ9wU4rBj4aAdN6ANoCEdAqYCBMSK3u3V9lChoBkdAmVb8sxwhn2gHTegDaAhHQKmCQ6T4cm11fZQoaAZHQJ6FHNqxkd5oB03oA2gIR0CpgnLyUcGUdX2UKGgGR0CehlVPva11aAdN6ANoCEdAqYWdlf7aZnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 48624, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (341 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1625.6382412771113, "std_reward": 176.51481690089125, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-30T11:38:15.781089"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b07c047da045dba195f897f40f243d8a162a2efae9a0021a02b5f556d13fb6d9
|
3 |
+
size 2176
|