|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Llava-NeXT model.""" |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.generation import GenerationMixin |
|
from transformers.image_processing_utils import select_best_resolution |
|
from transformers.modeling_outputs import ModelOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.models.auto import AutoModel, AutoModelForCausalLM |
|
from transformers.models.llava_next.configuration_llava_next import LlavaNextConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "LlavaNextConfig" |
|
from pathlib import Path |
|
|
|
def save_list_to_incremental_file(data_list, save_dir="/common/home/users/w/wzhao/vqclip/llava_next_tensors"): |
|
""" |
|
将列表保存到指定目录,文件名按数字递增 |
|
|
|
Args: |
|
data_list: 要保存的列表数据 |
|
save_dir: 保存目录路径 |
|
|
|
Returns: |
|
保存的文件路径 |
|
""" |
|
|
|
save_dir = Path(save_dir) |
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
index = 1 |
|
while True: |
|
file_path = save_dir / f"{index}.npy" |
|
if not file_path.exists(): |
|
break |
|
index += 1 |
|
|
|
|
|
np_array = np.array(data_list) |
|
np.save(str(file_path), np_array) |
|
|
|
return file_path |
|
|
|
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): |
|
""" |
|
Calculate the shape of the image patch grid after the preprocessing for images of any resolution. |
|
|
|
Args: |
|
image_size (`tuple`): |
|
The size of the input image in the format (width, height). |
|
grid_pinpoints (`List`): |
|
A list containing possible resolutions. Each item in the list should be a tuple or list |
|
of the form `(height, width)`. |
|
patch_size (`int`): |
|
The size of each image patch. |
|
|
|
Returns: |
|
tuple: The shape of the image patch grid in the format (width, height). |
|
""" |
|
if not isinstance(grid_pinpoints, list): |
|
raise TypeError("grid_pinpoints should be a list of tuples or lists") |
|
|
|
|
|
if not isinstance(image_size, (list, tuple)): |
|
if not isinstance(image_size, (torch.Tensor, np.ndarray)): |
|
raise TypeError( |
|
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor" |
|
) |
|
image_size = image_size.tolist() |
|
|
|
height, width = select_best_resolution(image_size, grid_pinpoints) |
|
return height // patch_size, width // patch_size |
|
|
|
|
|
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int): |
|
""" |
|
Calculate the number of patches after the preprocessing for images of any resolution. |
|
|
|
Args: |
|
image_size (`torch.LongTensor` or `np.ndarray` or `Tuple[int, int]`): |
|
The size of the input image in the format (height, width). ? |
|
grid_pinpoints (`List`): |
|
A list containing possible resolutions. Each item in the list should be a tuple or list |
|
of the form `(height, width)`. |
|
patch_size (`int`): |
|
The size of each image patch. |
|
|
|
Returns: |
|
int: the number of patches |
|
""" |
|
if not isinstance(grid_pinpoints, list): |
|
raise TypeError("grid_pinpoints should be a list of tuples or lists") |
|
|
|
|
|
if not isinstance(image_size, (list, tuple)): |
|
if not isinstance(image_size, (torch.Tensor, np.ndarray)): |
|
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}") |
|
image_size = image_size.tolist() |
|
|
|
best_resolution = select_best_resolution(image_size, grid_pinpoints) |
|
height, width = best_resolution |
|
num_patches = 0 |
|
|
|
for i in range(0, height, patch_size): |
|
for j in range(0, width, patch_size): |
|
num_patches += 1 |
|
|
|
num_patches += 1 |
|
return num_patches |
|
|
|
|
|
def unpad_image(tensor, original_size): |
|
""" |
|
Unpads a PyTorch tensor of a padded and resized image. |
|
|
|
Args: |
|
tensor (`torch.Tensor`): |
|
The image tensor, assumed to be of shape (num_channels, height, width). |
|
original_size (`tuple`): |
|
The original size of the image (height, width). |
|
|
|
Returns: |
|
`torch.Tensor`: The unpadded image tensor. |
|
""" |
|
if not isinstance(original_size, (list, tuple)): |
|
if not isinstance(original_size, (torch.Tensor, np.ndarray)): |
|
raise TypeError( |
|
f"image_size invalid type: {type(original_size)} not valid, should be either list, tuple, np.ndarray or tensor" |
|
) |
|
original_size = original_size.tolist() |
|
original_height, original_width = original_size |
|
current_height, current_width = tensor.shape[1:] |
|
|
|
original_aspect_ratio = original_width / original_height |
|
current_aspect_ratio = current_width / current_height |
|
|
|
if original_aspect_ratio > current_aspect_ratio: |
|
scale_factor = current_width / original_width |
|
new_height = int(original_height * scale_factor) |
|
padding = (current_height - new_height) // 2 |
|
unpadded_tensor = tensor[:, padding : current_height - padding, :] |
|
else: |
|
scale_factor = current_height / original_height |
|
new_width = int(original_width * scale_factor) |
|
padding = (current_width - new_width) // 2 |
|
unpadded_tensor = tensor[:, :, padding : current_width - padding] |
|
|
|
return unpadded_tensor |
|
|
|
|
|
@dataclass |
|
class LlavaNextCausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for LlavaNext causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`torch.FloatTensor`, *optional*): |
|
A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`. |
|
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
class VectorQuantizer(nn.Module): |
|
def __init__(self, num_embeddings: int, embedding_dim: int, commitment_cost: float = 0.25): |
|
super().__init__() |
|
self.num_embeddings = num_embeddings |
|
self.embedding_dim = embedding_dim |
|
self.commitment_cost = commitment_cost |
|
|
|
|
|
self.embedding = nn.Embedding(num_embeddings, embedding_dim) |
|
self.embedding.weight.data.uniform_(-1/num_embeddings, 1/num_embeddings) |
|
|
|
def forward(self, inputs): |
|
|
|
self.embedding.weight.data = self.embedding.weight.data.to(dtype=inputs.dtype) |
|
|
|
inputs = inputs.permute(0, 2, 1).contiguous() |
|
input_shape = inputs.shape |
|
|
|
|
|
flat_input = inputs.view(-1, self.embedding_dim) |
|
|
|
|
|
distances = (torch.sum(flat_input**2, dim=1, keepdim=True) |
|
+ torch.sum(self.embedding.weight**2, dim=1) |
|
- 2 * torch.matmul(flat_input, self.embedding.weight.t())) |
|
|
|
|
|
encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) |
|
encodings = torch.zeros(encoding_indices.shape[0], self.num_embeddings, device=inputs.device).to(inputs.dtype) |
|
encodings.scatter_(1, encoding_indices, 1) |
|
|
|
|
|
|
|
|
|
quantized = torch.matmul(encodings, self.embedding.weight).view(input_shape) |
|
|
|
|
|
e_latent_loss = torch.mean((quantized.detach() - inputs)**2) |
|
q_latent_loss = torch.mean((quantized - inputs.detach())**2) |
|
loss = q_latent_loss + self.commitment_cost * e_latent_loss |
|
print("this is q_latent_loss", q_latent_loss) |
|
print("This is e_latent_loss", self.commitment_cost * e_latent_loss) |
|
quantized = inputs + (quantized - inputs).detach() |
|
avg_probs = torch.mean(encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) |
|
|
|
|
|
return quantized.permute(0, 2, 1).contiguous(), loss, perplexity |
|
|
|
|
|
class LlavaNextMultiModalProjector(nn.Module): |
|
def __init__(self, config: LlavaNextConfig): |
|
super().__init__() |
|
|
|
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) |
|
self.act = ACT2FN[config.projector_hidden_act] |
|
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) |
|
self.vq = VectorQuantizer( |
|
num_embeddings=16000, |
|
embedding_dim=config.text_config.hidden_size, |
|
commitment_cost=0.5 |
|
) |
|
self.vq_cls = VectorQuantizerCLS( |
|
num_embeddings=128, |
|
embedding_dim=4096, |
|
commitment_cost=0.25, |
|
use_cosine=True |
|
) |
|
def forward(self, image_features): |
|
cls_features = image_features[: , :1] |
|
cls_features = self.linear_1(cls_features) |
|
cls_features = self.act(cls_features) |
|
cls_features = self.linear_2(cls_features) |
|
cls_features = cls_features[:, 0:] |
|
cls_features = cls_features.mean(dim=0, keepdim=True).squeeze(0) |
|
|
|
quantized, loss, perplexity, indices = self.vq_cls(cls_features) |
|
categories = self.vq_cls.get_category_from_index(indices) |
|
indices = indices.cpu().numpy() |
|
print(indices) |
|
print(categories) |
|
if categories[0] != 0: |
|
raise ValueError([indices, categories[0]]) |
|
|
|
|
|
|
|
image_features = image_features[: , 1:] |
|
hidden_states = self.linear_1(image_features) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
|
|
quantized_features, vq_loss, perplexity = self.vq(hidden_states) |
|
print(quantized_features.shape) |
|
return quantized_features, vq_loss |
|
|
|
|
|
LLAVA_NEXT_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`LlavaNextConfig`] or [`LlavaNextVisionConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
class VectorQuantizerCLS(nn.Module): |
|
def __init__(self, num_embeddings: int = 64, embedding_dim: int = 4096, commitment_cost: float = 0.25, |
|
codebook_path: str = None, mapping_path: str = None, use_cosine: bool = True, |
|
randomize_indices: bool = True): |
|
super().__init__() |
|
self.num_embeddings = num_embeddings |
|
self.embedding_dim = embedding_dim |
|
self.commitment_cost = commitment_cost |
|
self.use_cosine = use_cosine |
|
|
|
|
|
self.embedding = nn.Embedding(num_embeddings, embedding_dim) |
|
self.embedding.weight.data.uniform_(-1/num_embeddings, 1/num_embeddings) |
|
|
|
|
|
self.register_buffer('_category_mapping_indices', torch.zeros(num_embeddings, dtype=torch.long)) |
|
self.register_buffer('_category_mapping_names', torch.zeros(num_embeddings, dtype=torch.long)) |
|
|
|
|
|
self.center_to_category = None |
|
|
|
|
|
if codebook_path is not None and mapping_path is not None: |
|
self.load_codebook(codebook_path, mapping_path, randomize_indices) |
|
|
|
def load_codebook(self, codebook_path, mapping_path, randomize_indices=True): |
|
"""加载预计算的codebook和类别映射,并可选择随机化索引""" |
|
try: |
|
|
|
print(f"Loading codebook from {codebook_path}") |
|
centers = np.load(codebook_path) |
|
print(f"Loaded codebook with shape: {centers.shape}") |
|
|
|
|
|
print(f"Loading category mappings from {mapping_path}") |
|
with open(mapping_path, 'rb') as f: |
|
mappings = pickle.load(f) |
|
|
|
|
|
category_mapping_text = mappings['category_mapping'] |
|
classes = {'neutral':0, 'porn':1, 'gun':2, 'cigarette':3, 'alcohol':4, 'knife':5, 'blood':6, 'insulting_gesture':7} |
|
|
|
|
|
center_category_mapping = {} |
|
for i, category_text in enumerate(category_mapping_text): |
|
center_category_mapping[i] = classes.get(category_text, 0) |
|
|
|
print(f"Loaded {len(center_category_mapping)} category mappings") |
|
|
|
|
|
actual_centers = centers.shape[0] |
|
print(f"Actual centers: {actual_centers}") |
|
|
|
|
|
self.num_embeddings = actual_centers |
|
print(f"Setting num_embeddings to {self.num_embeddings}") |
|
|
|
|
|
if randomize_indices: |
|
print("Randomizing codebook indices to prevent category clustering") |
|
|
|
permutation = list(range(actual_centers)) |
|
random.shuffle(permutation) |
|
inverse_permutation = {v: k for k, v in enumerate(permutation)} |
|
|
|
|
|
permuted_centers = np.zeros_like(centers) |
|
permuted_categories = {} |
|
|
|
for new_idx, old_idx in enumerate(permutation): |
|
permuted_centers[new_idx] = centers[old_idx] |
|
if old_idx < len(center_category_mapping): |
|
permuted_categories[new_idx] = center_category_mapping[old_idx] |
|
|
|
|
|
centers = permuted_centers |
|
self.center_to_category = permuted_categories |
|
|
|
|
|
print("Sample randomized mappings:") |
|
for i in range(min(5, len(self.center_to_category))): |
|
print(f" New index {i}: {self.center_to_category[i]}") |
|
else: |
|
|
|
self.center_to_category = {i: center_category_mapping[i] |
|
for i in range(min(actual_centers, len(center_category_mapping)))} |
|
|
|
|
|
for i in range(self.num_embeddings): |
|
if i not in self.center_to_category: |
|
print(f"Warning: No category mapping for center {i}, setting to 0") |
|
self.center_to_category[i] = 0 |
|
|
|
|
|
embedding_data = torch.tensor(centers, dtype=torch.float32) |
|
|
|
|
|
self.embedding = nn.Embedding(self.num_embeddings, self.embedding_dim) |
|
self.embedding.weight.data.copy_(embedding_data) |
|
|
|
|
|
self.register_buffer('_category_mapping_indices', torch.zeros(self.num_embeddings, dtype=torch.long)) |
|
self.register_buffer('_category_mapping_names', torch.zeros(self.num_embeddings, dtype=torch.long)) |
|
|
|
|
|
self._store_category_mapping() |
|
|
|
print(f"Successfully loaded codebook with {self.num_embeddings} entries") |
|
|
|
|
|
category_counts = {} |
|
for category in self.center_to_category.values(): |
|
if category in category_counts: |
|
category_counts[category] += 1 |
|
else: |
|
category_counts[category] = 1 |
|
|
|
print("Category distribution in codebook:") |
|
for category, count in sorted(category_counts.items()): |
|
print(f" {category}: {count} centers") |
|
|
|
return True |
|
|
|
except Exception as e: |
|
print(f"Error loading codebook: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
print("Using random initialization instead") |
|
return False |
|
|
|
def _store_category_mapping(self): |
|
"""将类别映射存储到模型的buffer中,以便在state_dict中保存""" |
|
if not self.center_to_category: |
|
warnings.warn("No category mapping to store") |
|
return |
|
|
|
|
|
all_categories = sorted(set(self.center_to_category.values())) |
|
|
|
|
|
indices = list(self.center_to_category.keys()) |
|
category_ids = [self.center_to_category[idx] for idx in indices] |
|
|
|
|
|
if len(indices) != self._category_mapping_indices.size(0): |
|
|
|
self.register_buffer('_category_mapping_indices', torch.zeros(len(indices), dtype=torch.long)) |
|
self.register_buffer('_category_mapping_names', torch.zeros(len(indices), dtype=torch.long)) |
|
|
|
|
|
self._category_mapping_indices.copy_(torch.tensor(indices, dtype=torch.long)) |
|
self._category_mapping_names.copy_(torch.tensor(category_ids, dtype=torch.long)) |
|
|
|
print(f"Stored category mapping with {len(indices)} entries and {len(all_categories)} unique categories") |
|
|
|
def _load_category_mapping(self): |
|
"""从模型的buffer恢复类别映射""" |
|
if not hasattr(self, '_category_mapping_indices') or self._category_mapping_indices.numel() == 0: |
|
warnings.warn("No stored category mapping found") |
|
return {} |
|
|
|
|
|
indices = self._category_mapping_indices.tolist() |
|
category_ids = self._category_mapping_names.tolist() |
|
|
|
mapping = {} |
|
for idx, cat_id in zip(indices, category_ids): |
|
mapping[idx] = cat_id |
|
|
|
return mapping |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): |
|
"""自定义state_dict加载方法,处理buffer大小不匹配的问题""" |
|
|
|
indices_key = prefix + '_category_mapping_indices' |
|
names_key = prefix + '_category_mapping_names' |
|
|
|
if indices_key in state_dict and names_key in state_dict: |
|
indices_size = state_dict[indices_key].size() |
|
names_size = state_dict[names_key].size() |
|
|
|
|
|
if hasattr(self, '_category_mapping_indices') and self._category_mapping_indices.size() != indices_size: |
|
self.register_buffer('_category_mapping_indices', torch.zeros(indices_size, dtype=torch.long)) |
|
|
|
if hasattr(self, '_category_mapping_names') and self._category_mapping_names.size() != names_size: |
|
self.register_buffer('_category_mapping_names', torch.zeros(names_size, dtype=torch.long)) |
|
|
|
|
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) |
|
|
|
|
|
self.center_to_category = self._load_category_mapping() |
|
|
|
|
|
if hasattr(self, 'embedding') and hasattr(self.embedding, 'weight'): |
|
self.num_embeddings = self.embedding.weight.size(0) |
|
|
|
def forward(self, inputs): |
|
""" |
|
前向传播,专门处理(1, 4096)形状的输入 |
|
|
|
Args: |
|
inputs: 形状为(1, 4096)的特征向量 |
|
|
|
Returns: |
|
quantized: 量化后的特征向量 |
|
loss: 承诺损失 |
|
perplexity: 困惑度 |
|
encoding_indices: 编码索引 |
|
""" |
|
|
|
if inputs.shape != (1, 4096): |
|
raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}") |
|
|
|
|
|
self.embedding.weight.data = self.embedding.weight.data.to(dtype=inputs.dtype) |
|
|
|
|
|
flat_input = inputs |
|
|
|
|
|
if self.use_cosine: |
|
|
|
normalized_input = F.normalize(flat_input, p=2, dim=1) |
|
normalized_weights = F.normalize(self.embedding.weight, p=2, dim=1) |
|
|
|
|
|
cosine_sim = torch.matmul(normalized_input, normalized_weights.t()) |
|
|
|
|
|
distances = 1 - cosine_sim |
|
else: |
|
|
|
distances = (torch.sum(flat_input**2, dim=1, keepdim=True) |
|
+ torch.sum(self.embedding.weight**2, dim=1) |
|
- 2 * torch.matmul(flat_input, self.embedding.weight.t())) |
|
|
|
|
|
encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) |
|
|
|
|
|
encodings = torch.zeros(encoding_indices.shape[0], self.num_embeddings, device=inputs.device).to(inputs.dtype) |
|
encodings.scatter_(1, encoding_indices, 1) |
|
|
|
|
|
quantized = torch.matmul(encodings, self.embedding.weight) |
|
|
|
|
|
e_latent_loss = torch.mean((quantized.detach() - flat_input)**2) |
|
q_latent_loss = torch.mean((quantized - flat_input.detach())**2) |
|
loss = q_latent_loss + self.commitment_cost * e_latent_loss |
|
|
|
print("this is q_latent_loss", q_latent_loss) |
|
print("This is e_latent_loss", self.commitment_cost * e_latent_loss) |
|
|
|
|
|
quantized = flat_input + (quantized - flat_input).detach() |
|
|
|
|
|
avg_probs = torch.mean(encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) |
|
|
|
|
|
return quantized, loss, perplexity, encoding_indices.squeeze() |
|
|
|
def encode(self, inputs): |
|
""" |
|
仅执行编码过程,返回索引 |
|
|
|
Args: |
|
inputs: 形状为(1, 4096)的特征向量 |
|
|
|
Returns: |
|
编码索引 |
|
""" |
|
|
|
if inputs.shape != (1, 4096): |
|
raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}") |
|
|
|
with torch.no_grad(): |
|
|
|
if self.use_cosine: |
|
normalized_input = F.normalize(inputs, p=2, dim=1) |
|
normalized_weights = F.normalize(self.embedding.weight, p=2, dim=1) |
|
cosine_sim = torch.matmul(normalized_input, normalized_weights.t()) |
|
distances = 1 - cosine_sim |
|
else: |
|
distances = (torch.sum(inputs**2, dim=1, keepdim=True) |
|
+ torch.sum(self.embedding.weight**2, dim=1) |
|
- 2 * torch.matmul(inputs, self.embedding.weight.t())) |
|
|
|
|
|
encoding_indices = torch.argmin(distances, dim=1) |
|
|
|
return encoding_indices |
|
|
|
def get_category_from_index(self, indices): |
|
""" |
|
根据索引获取对应的类别编号 |
|
|
|
Args: |
|
indices: 编码索引 |
|
|
|
Returns: |
|
类别编号列表 |
|
""" |
|
|
|
if self.center_to_category is None: |
|
self.center_to_category = self._load_category_mapping() |
|
|
|
if not self.center_to_category: |
|
return [0] * indices.numel() |
|
|
|
|
|
indices_np = indices.cpu().numpy().flatten() |
|
|
|
|
|
categories = [] |
|
for idx in indices_np: |
|
idx_int = int(idx) |
|
category = self.center_to_category.get(idx_int, 0) |
|
categories.append(category) |
|
|
|
return categories |
|
|
|
def classify(self, inputs): |
|
""" |
|
对输入特征进行分类,返回类别编号和索引 |
|
|
|
Args: |
|
inputs: 形状为(1, 4096)的特征向量 |
|
|
|
Returns: |
|
categories: 预测的类别编号 |
|
indices: 编码索引 |
|
""" |
|
|
|
if inputs.shape != (1, 4096): |
|
raise ValueError(f"Expected input shape (1, 4096), got {inputs.shape}") |
|
|
|
indices = self.encode(inputs) |
|
categories = self.get_category_from_index(indices) |
|
return categories, indices |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.", |
|
LLAVA_NEXT_START_DOCSTRING, |
|
) |
|
|
|
class LlavaNextPreTrainedModel(PreTrainedModel): |
|
config_class = LlavaNextConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["LlavaNextVisionAttention"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_cache_class = True |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module): |
|
|
|
|
|
|
|
std = ( |
|
self.config.initializer_range |
|
if hasattr(self.config, "initializer_range") |
|
else self.config.text_config.initializer_range |
|
) |
|
|
|
if hasattr(module, "class_embedding"): |
|
module.class_embedding.data.normal_(mean=0.0, std=std) |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
LLAVA_NEXT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): |
|
The tensors corresponding to the input images. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`LlavaNextImageProcessor.__call__`] for details. [`LlavaProcessor`] uses |
|
[`LlavaNextImageProcessor`] for processing images. |
|
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*): |
|
The sizes of the images in the batch, being (height, width) for each image. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
vision_feature_layer (`int`, *optional*, defaults to -2): |
|
The index of the layer to select the vision feature. |
|
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): |
|
The feature selection strategy used to select the vision feature from the vision backbone. |
|
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. |
|
If `"full"`, the full vision features are used. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"""The LLAVA-NeXT model which consists of a vision backbone and a language model.""", |
|
LLAVA_NEXT_START_DOCSTRING, |
|
) |
|
class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel, GenerationMixin): |
|
def __init__(self, config: LlavaNextConfig): |
|
super().__init__(config) |
|
self.vision_tower = AutoModel.from_config(config.vision_config) |
|
|
|
self.multi_modal_projector = LlavaNextMultiModalProjector(config) |
|
embed_std = 1 / math.sqrt(config.text_config.hidden_size) |
|
self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std) |
|
|
|
self.vocab_size = config.text_config.vocab_size |
|
self.language_model = AutoModelForCausalLM.from_config(config.text_config) |
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
self._padding_side = "left" |
|
self.post_init() |
|
|
|
@property |
|
def padding_side(self): |
|
return self._padding_side |
|
|
|
@padding_side.setter |
|
def padding_side(self, padding_side: str): |
|
if padding_side not in ["left", "right"]: |
|
raise ValueError(f"{padding_side} is not `left` or `right`.") |
|
self._padding_side = padding_side |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
|
|
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: |
|
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
def _merge_input_ids_with_image_features( |
|
self, |
|
image_features, |
|
feature_lens, |
|
inputs_embeds, |
|
input_ids, |
|
attention_mask, |
|
position_ids=None, |
|
labels=None, |
|
image_token_index=None, |
|
ignore_index=-100, |
|
): |
|
""" |
|
Merge input_ids with with image features into final embeddings |
|
|
|
Args: |
|
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`): |
|
All vision vectors of all images in the batch |
|
feature_lens (`torch.LongTensor` of shape `(num_images)`): |
|
The length of visual embeddings of each image as stacked in `image_features` |
|
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`): |
|
Token embeddings before merging with visual embeddings |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Input_ids of tokens, possibly filled with image token |
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Mask to avoid performing attention on padding token indices. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) |
|
:abels need to be recalculated to support training (if provided) |
|
image_token_index (`int`, *optional*) |
|
Token id used to indicate the special "image" token. Defaults to `config.image_token_index` |
|
ignore_index (`int`, *optional*) |
|
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100. |
|
Returns: |
|
final_embedding, final_attention_mask, position_ids, final_labels |
|
|
|
Explanation: |
|
each image has variable length embeddings, with length specified by feature_lens |
|
image_features is concatenation of all visual embed vectors |
|
task: fill each <image> with the correct number of visual embeddings |
|
Example: |
|
X (5 patches), Y (3 patches), Z (8) |
|
X, Y are in the same sequence (in-context learning) |
|
if right padding |
|
input_ids: [ |
|
a b c d e f X g h i j k Y l m |
|
o p q r Z s t u v _ _ _ _ _ _ |
|
] |
|
input_ids should be: [ |
|
a b c d e f X X X X X g h i j k Y Y Y l m |
|
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _ |
|
] |
|
labels should be: [ |
|
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m |
|
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _ |
|
] |
|
elif left padding |
|
input_ids: [ |
|
a b c d e f X g h i j k Y l m |
|
_ _ _ _ _ _ o p q r Z s t u v |
|
] |
|
input_ids should be: [ |
|
a b c d e f X X X X X g h i j k Y Y Y l m |
|
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v |
|
] |
|
labels should be: [ |
|
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m |
|
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v |
|
] |
|
Edge cases: |
|
* If tokens are same but image token sizes are different, then cannot infer left or right padding |
|
```python |
|
cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) |
|
chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw) |
|
prompts = [ |
|
"[INST] <image>\nWhat is shown in this image? [/INST]", |
|
"[INST] <image>\nWhat is shown in this image? [/INST]", |
|
] |
|
inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda") |
|
chart_img has 2634 tokens, while cat_img has 2340 tokens |
|
``` |
|
|
|
input_ids: [ |
|
a b c d X g h |
|
i j Y k l m n |
|
] |
|
where X is 3 tokens while Y is 5, this mean after merge |
|
if left-padding (batched generation) |
|
input_ids should be: [ |
|
_ _ a b c d X X X g h |
|
i j Y Y Y Y Y k l m n |
|
] |
|
elif (right padding) (training) |
|
input_ids should be: [ |
|
a b c d X X X g h _ _ |
|
i j Y Y Y Y Y k l m n |
|
] |
|
""" |
|
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index |
|
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index |
|
|
|
if self.training and self.padding_side == "left": |
|
logger.warning_once( |
|
"Padding side is set to 'left' but the model is in training mode. For training " |
|
"it is recommended to set `model.padding_side='right' and `processor.tokenizer.padding_side='right'`. " |
|
"If that's intended, ignore this warning" |
|
) |
|
if not self.training and self.padding_side == "right": |
|
logger.warning_once( |
|
"Padding side is set to 'right' but the model is in inference mode. For correct " |
|
"generation results, please set `model.padding_side='left'` and `processor.tokenizer.padding_side='left'`. " |
|
"If that's intended, ignore this warning" |
|
) |
|
|
|
with torch.no_grad(): |
|
|
|
num_images = feature_lens.size(0) |
|
num_image_features, embed_dim = image_features.shape |
|
if feature_lens.sum() != num_image_features: |
|
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}") |
|
batch_size = input_ids.shape[0] |
|
_left_padding = torch.any(attention_mask[:, 0] == 0) |
|
_right_padding = torch.any(attention_mask[:, -1] == 0) |
|
|
|
left_padding = self.padding_side == "left" |
|
if batch_size > 1: |
|
if _left_padding and _right_padding: |
|
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}") |
|
elif _right_padding and left_padding: |
|
left_padding = False |
|
elif _left_padding and not left_padding: |
|
left_padding = True |
|
|
|
|
|
|
|
special_image_token_mask = input_ids == image_token_index |
|
|
|
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) |
|
|
|
|
|
total_num_special_image_tokens = torch.sum(special_image_token_mask) |
|
if total_num_special_image_tokens != num_images: |
|
raise ValueError( |
|
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})." |
|
) |
|
|
|
|
|
feature_lens = feature_lens.to(input_ids.device) |
|
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0) |
|
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device) |
|
embed_sequence_lengths = ( |
|
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum |
|
) |
|
max_embed_dim = embed_sequence_lengths.max() |
|
|
|
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
special_image_token_mask = special_image_token_mask.long() |
|
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1 |
|
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1 |
|
if left_padding: |
|
|
|
|
|
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:] |
|
|
|
text_to_overwrite = new_token_positions[batch_indices, non_image_indices] |
|
|
|
|
|
final_embedding = torch.zeros( |
|
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device |
|
) |
|
final_attention_mask = torch.zeros( |
|
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device |
|
) |
|
final_input_ids = torch.full( |
|
(batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device |
|
) |
|
|
|
|
|
target_device = inputs_embeds.device |
|
batch_indices, non_image_indices, text_to_overwrite = ( |
|
batch_indices.to(target_device), |
|
non_image_indices.to(target_device), |
|
text_to_overwrite.to(target_device), |
|
) |
|
attention_mask = attention_mask.to(target_device) |
|
input_ids = input_ids.to(target_device) |
|
|
|
|
|
|
|
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] |
|
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] |
|
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices] |
|
final_labels = None |
|
if labels is not None: |
|
labels = labels.to(target_device) |
|
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long) |
|
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] |
|
|
|
|
|
with torch.no_grad(): |
|
image_to_overwrite = torch.full( |
|
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
image_to_overwrite[batch_indices, text_to_overwrite] = False |
|
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device) |
|
embed_indices = embed_indices.expand(batch_size, max_embed_dim) |
|
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device) |
|
|
|
if left_padding: |
|
|
|
max_embed_dim = max_embed_dim.to(target_device) |
|
val = (max_embed_dim - embed_indices) <= embed_seq_lens |
|
else: |
|
|
|
val = embed_indices < embed_seq_lens |
|
image_to_overwrite &= val |
|
|
|
if image_to_overwrite.sum() != num_image_features: |
|
raise ValueError( |
|
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. " |
|
f"The number of image tokens is {torch.sum(special_image_token_mask)} while" |
|
f" the number of image given to the model is {num_images}. " |
|
f"This prevents correct indexing and breaks batch generation." |
|
) |
|
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) |
|
final_attention_mask |= image_to_overwrite |
|
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) |
|
|
|
return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids |
|
|
|
def pack_image_features(self, image_features, image_sizes, vision_feature_select_strategy, image_newline=None): |
|
""" |
|
Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors. |
|
|
|
Args: |
|
image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`) |
|
List of image feature tensor, each contains all the visual feature of all patches. |
|
image_sizes (`torch.Tensor` of shape `(num_images, 2)`) |
|
Actual image size of each images (H, W). |
|
vision_feature_select_strategy (`str`) |
|
The feature selection strategy used to select the vision feature from the vision backbone. |
|
image_newline (`torch.Tensor` of shape `(embed_dim)`) |
|
New line embedding vector. |
|
Returns: |
|
image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`) |
|
feature_lens (`List[int]`) |
|
token length of each image in image_features |
|
""" |
|
new_image_features = [] |
|
feature_lens = [] |
|
for image_idx, image_feature in enumerate(image_features): |
|
if image_feature.shape[0] > 1: |
|
base_image_feature = image_feature[0] |
|
image_feature = image_feature[1:] |
|
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size |
|
|
|
if vision_feature_select_strategy == "default": |
|
expected_num_patches = height * width |
|
elif vision_feature_select_strategy == "full": |
|
expected_num_patches = height * width + 1 |
|
if expected_num_patches != base_image_feature.shape[0]: |
|
raise ValueError("The number of patches is not consistent with the image size.") |
|
|
|
num_patch_height, num_patch_width = get_anyres_image_grid_shape( |
|
image_sizes[image_idx], |
|
self.config.image_grid_pinpoints, |
|
self.config.vision_config.image_size, |
|
) |
|
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = unpad_image(image_feature, image_sizes[image_idx]) |
|
if image_newline is not None: |
|
image_feature = torch.cat( |
|
( |
|
image_feature, |
|
image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.dtype), |
|
), |
|
dim=-1, |
|
) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
image_feature = torch.cat((base_image_feature, image_feature), dim=0) |
|
else: |
|
image_feature = image_feature[0] |
|
if image_newline is not None: |
|
image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0) |
|
new_image_features.append(image_feature) |
|
feature_lens.append(image_feature.size(0)) |
|
image_features = torch.cat(new_image_features, dim=0) |
|
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device) |
|
return image_features, feature_lens |
|
|
|
def get_image_features( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
image_sizes: torch.Tensor, |
|
vision_feature_layer: int, |
|
vision_feature_select_strategy: str, |
|
): |
|
""" |
|
Obtains image last hidden states from the vision tower and apply multimodal projection. |
|
|
|
Args: |
|
pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_patches, channels, height, width)`) |
|
The tensors corresponding to the input images. |
|
image_sizes (`torch.Tensor` of shape `(num_images, 2)`) |
|
Actual image size of each images (H, W). |
|
vision_feature_layer (`int`): |
|
The index of the layer to select the vision feature. |
|
vision_feature_select_strategy (`str`): |
|
The feature selection strategy used to select the vision feature from the vision backbone. |
|
Can be one of `"default"` or `"full"` |
|
Returns: |
|
image_features (List[`torch.Tensor`]): List of image feature tensor, each contains all the visual feature of all patches |
|
and are of shape `(num_patches, image_length, embed_dim)`). |
|
""" |
|
|
|
image_num_patches = [ |
|
image_size_to_num_patches( |
|
image_size=imsize, |
|
grid_pinpoints=self.config.image_grid_pinpoints, |
|
patch_size=self.config.vision_config.image_size, |
|
) |
|
for imsize in image_sizes |
|
] |
|
if pixel_values.dim() == 5: |
|
|
|
_pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)] |
|
pixel_values = torch.cat(_pixel_values_list, dim=0) |
|
elif pixel_values.dim() != 4: |
|
|
|
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions") |
|
|
|
image_features = self.vision_tower(pixel_values, output_hidden_states=True) |
|
selected_image_feature = image_features.hidden_states[vision_feature_layer] |
|
if vision_feature_select_strategy == "default": |
|
|
|
|
|
selected_image_feature = selected_image_feature |
|
image_features, vq_loss = self.multi_modal_projector(selected_image_feature) |
|
image_features = torch.split(image_features, image_num_patches, dim=0) |
|
|
|
|
|
return image_features, vq_loss |
|
|
|
@add_start_docstrings_to_model_forward(LLAVA_NEXT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=LlavaNextCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
pixel_values: torch.FloatTensor = None, |
|
image_sizes: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
vision_feature_layer: Optional[int] = None, |
|
vision_feature_select_strategy: Optional[str] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
num_logits_to_keep: int = 0, |
|
) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
num_logits_to_keep (`int`, *optional*): |
|
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all |
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that |
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration |
|
|
|
>>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") |
|
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") |
|
|
|
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]" |
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, text=prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(**inputs, max_length=30) |
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)" |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
vision_feature_layer = ( |
|
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer |
|
) |
|
vision_feature_select_strategy = ( |
|
vision_feature_select_strategy |
|
if vision_feature_select_strategy is not None |
|
else self.config.vision_feature_select_strategy |
|
) |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if pixel_values is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
legacy_processing = False |
|
if inputs_embeds is None: |
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
|
|
|
|
|
|
|
|
legacy_processing = ( |
|
(input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length |
|
) or (input_ids.shape[-1] == 1 and pixel_values is not None) |
|
|
|
image_features = None |
|
if pixel_values is not None and pixel_values.size(0) > 0: |
|
image_features, vq_loss = self.get_image_features( |
|
pixel_values, |
|
image_sizes, |
|
vision_feature_layer=vision_feature_layer, |
|
vision_feature_select_strategy=vision_feature_select_strategy, |
|
) |
|
|
|
|
|
image_features, feature_lens = self.pack_image_features( |
|
image_features, |
|
image_sizes, |
|
vision_feature_select_strategy=vision_feature_select_strategy, |
|
image_newline=self.image_newline, |
|
) |
|
|
|
if legacy_processing: |
|
logger.warning_once( |
|
"Expanding inputs for image tokens in LLaVa-NeXT should be done in processing. " |
|
"Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly " |
|
"with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. " |
|
"Using processors without these attributes in the config is deprecated and will throw an error in v4.47." |
|
) |
|
if input_ids.shape[1] != 1: |
|
inputs_embeds = inputs_embeds.to(image_features.dtype) |
|
inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features( |
|
image_features, |
|
feature_lens, |
|
inputs_embeds, |
|
input_ids, |
|
attention_mask, |
|
position_ids, |
|
labels=labels, |
|
) |
|
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device) |
|
else: |
|
|
|
|
|
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] |
|
|
|
|
|
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) |
|
|
|
|
|
target_length = input_ids.shape[1] |
|
past_length = first_layer_past_key_value.shape[-1] |
|
|
|
extended_attention_mask = torch.ones( |
|
(attention_mask.shape[0], past_length), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device, |
|
) |
|
|
|
|
|
|
|
|
|
valid_indices = non_attended_tokens < extended_attention_mask.size(-1) |
|
new_batch_index = batch_index[valid_indices] |
|
new_non_attended_tokens = non_attended_tokens[valid_indices] |
|
|
|
|
|
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 |
|
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) |
|
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 |
|
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[-target_length:] |
|
|
|
|
|
elif image_features is not None: |
|
n_image_tokens = (input_ids == self.config.image_token_index).sum().item() |
|
n_image_features = image_features.shape[0] |
|
if n_image_tokens != n_image_features: |
|
raise ValueError( |
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" |
|
) |
|
special_image_mask = ( |
|
(input_ids == self.config.image_token_index) |
|
.unsqueeze(-1) |
|
.expand_as(inputs_embeds) |
|
.to(inputs_embeds.device) |
|
) |
|
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) |
|
|
|
outputs = self.language_model( |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
num_logits_to_keep=num_logits_to_keep, |
|
) |
|
|
|
logits = outputs[0] |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
if attention_mask is not None: |
|
|
|
|
|
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) |
|
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() |
|
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() |
|
else: |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) |
|
) |
|
print("This is original loss",loss) |
|
|
|
loss = loss |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return LlavaNextCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_hidden_states=image_features if pixel_values is not None else None, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
pixel_values=None, |
|
image_sizes=None, |
|
attention_mask=None, |
|
cache_position=None, |
|
num_logits_to_keep=None, |
|
**kwargs, |
|
): |
|
|
|
|
|
model_inputs = self.language_model.prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
cache_position=cache_position, |
|
num_logits_to_keep=num_logits_to_keep, |
|
**kwargs, |
|
) |
|
|
|
|
|
|
|
if cache_position[0] == 0: |
|
model_inputs["pixel_values"] = pixel_values |
|
model_inputs["image_sizes"] = image_sizes |
|
|
|
return model_inputs |
|
|