|
import torch |
|
from torch import nn |
|
from PIL import Image |
|
from einops import rearrange |
|
from torchvision.transforms.v2 import ( |
|
Compose, |
|
Resize, |
|
InterpolationMode, |
|
ToImage, |
|
ToDtype, |
|
Normalize, |
|
) |
|
import timm |
|
|
|
|
|
class VisualHolder(nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.visual = model |
|
|
|
def forward(self, x): |
|
return self.visual(x) |
|
|
|
|
|
class ModelHolder(nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.model = model |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
class LinearPatchEmbedding(nn.Module): |
|
def __init__(self, conv): |
|
super().__init__() |
|
self.linear = nn.Linear(588, 1152) |
|
self.linear.weight.data = conv.weight.data.view(1152, -1) |
|
if conv.bias is not None: |
|
self.linear.bias.data = conv.bias.data |
|
|
|
def forward(self, x): |
|
return self.linear(x) |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__( |
|
self, |
|
in_features: int, |
|
hidden_features: int = None, |
|
out_features: int = None, |
|
act_layer: nn.Module = nn.GELU, |
|
) -> None: |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
|
torch.nn.init.kaiming_normal_( |
|
self.fc1.weight, mode="fan_in", nonlinearity="relu" |
|
) |
|
torch.nn.init.kaiming_normal_( |
|
self.fc2.weight, mode="fan_in", nonlinearity="relu" |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
class VisionProjection(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
image_embedding_dim = 1152 |
|
model_dim = 2048 |
|
hidden_dim = model_dim * 4 |
|
|
|
self.mlp = MLP(image_embedding_dim, hidden_dim, model_dim) |
|
|
|
@property |
|
def device(self): |
|
return self.mlp.fc1.weight.device |
|
|
|
def forward(self, x): |
|
return self.mlp(x) |
|
|
|
|
|
class VisionEncoder(nn.Module): |
|
def __init__(self) -> None: |
|
super().__init__() |
|
|
|
self.encoder = ModelHolder( |
|
VisualHolder(timm.create_model("vit_so400m_patch14_siglip_384")) |
|
) |
|
self.encoder.model.visual.patch_embed = LinearPatchEmbedding( |
|
self.encoder.model.visual.patch_embed.proj |
|
) |
|
self.encoder.model.visual.attn_pool = nn.Identity() |
|
|
|
self.projection = VisionProjection() |
|
|
|
self.preprocess = Compose( |
|
[ |
|
Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC), |
|
ToImage(), |
|
ToDtype(torch.float32, scale=True), |
|
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
] |
|
) |
|
|
|
@property |
|
def device(self): |
|
return self.projection.mlp.fc1.weight.device |
|
|
|
@property |
|
def dtype(self): |
|
return self.projection.mlp.fc1.weight.dtype |
|
|
|
def __call__(self, images) -> torch.Tensor: |
|
if not isinstance(images, list): |
|
images = [images] |
|
|
|
with torch.no_grad(): |
|
x = torch.stack( |
|
[self.preprocess(image.convert("RGB")) for image in images] |
|
).to(self.device, dtype=self.dtype) |
|
|
|
x = rearrange(x, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14) |
|
|
|
x = self.encoder(x) |
|
x = self.projection(x) |
|
|
|
return x |
|
|