vigneshgs7
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b5
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b5-p142-cvat-vgs
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer-b5-p142-cvat-vgs
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the vigneshgs7/segformer_open_cv_RGB_L_0_1 dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0131
|
21 |
+
- Mean Iou: 0.4961
|
22 |
+
- Mean Accuracy: 0.9922
|
23 |
+
- Overall Accuracy: 0.9922
|
24 |
+
- Accuracy Background: nan
|
25 |
+
- Accuracy Object: 0.9922
|
26 |
+
- Iou Background: 0.0
|
27 |
+
- Iou Object: 0.9922
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 2
|
48 |
+
- eval_batch_size: 2
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Object | Iou Background | Iou Object |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:---------------:|:--------------:|:----------:|
|
58 |
+
| 0.2847 | 0.06 | 20 | 0.3843 | 0.4662 | 0.9324 | 0.9324 | nan | 0.9324 | 0.0 | 0.9324 |
|
59 |
+
| 0.1681 | 0.11 | 40 | 0.1983 | 0.4704 | 0.9408 | 0.9408 | nan | 0.9408 | 0.0 | 0.9408 |
|
60 |
+
| 0.1592 | 0.17 | 60 | 0.1303 | 0.4745 | 0.9489 | 0.9489 | nan | 0.9489 | 0.0 | 0.9489 |
|
61 |
+
| 0.1177 | 0.23 | 80 | 0.0922 | 0.4944 | 0.9888 | 0.9888 | nan | 0.9888 | 0.0 | 0.9888 |
|
62 |
+
| 0.062 | 0.29 | 100 | 0.0745 | 0.4946 | 0.9892 | 0.9892 | nan | 0.9892 | 0.0 | 0.9892 |
|
63 |
+
| 0.0767 | 0.34 | 120 | 0.0545 | 0.4852 | 0.9703 | 0.9703 | nan | 0.9703 | 0.0 | 0.9703 |
|
64 |
+
| 0.0984 | 0.4 | 140 | 0.0621 | 0.4938 | 0.9875 | 0.9875 | nan | 0.9875 | 0.0 | 0.9875 |
|
65 |
+
| 0.1779 | 0.46 | 160 | 0.0504 | 0.4961 | 0.9921 | 0.9921 | nan | 0.9921 | 0.0 | 0.9921 |
|
66 |
+
| 0.0468 | 0.52 | 180 | 0.0407 | 0.4904 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
|
67 |
+
| 0.0618 | 0.57 | 200 | 0.0390 | 0.4936 | 0.9873 | 0.9873 | nan | 0.9873 | 0.0 | 0.9873 |
|
68 |
+
| 0.062 | 0.63 | 220 | 0.0348 | 0.4947 | 0.9894 | 0.9894 | nan | 0.9894 | 0.0 | 0.9894 |
|
69 |
+
| 0.0357 | 0.69 | 240 | 0.0341 | 0.4914 | 0.9828 | 0.9828 | nan | 0.9828 | 0.0 | 0.9828 |
|
70 |
+
| 0.0304 | 0.74 | 260 | 0.0351 | 0.4960 | 0.9920 | 0.9920 | nan | 0.9920 | 0.0 | 0.9920 |
|
71 |
+
| 0.0267 | 0.8 | 280 | 0.0311 | 0.4938 | 0.9877 | 0.9877 | nan | 0.9877 | 0.0 | 0.9877 |
|
72 |
+
| 0.0536 | 0.86 | 300 | 0.0282 | 0.4904 | 0.9807 | 0.9807 | nan | 0.9807 | 0.0 | 0.9807 |
|
73 |
+
| 0.049 | 0.92 | 320 | 0.0274 | 0.4928 | 0.9855 | 0.9855 | nan | 0.9855 | 0.0 | 0.9855 |
|
74 |
+
| 0.0304 | 0.97 | 340 | 0.0262 | 0.4936 | 0.9872 | 0.9872 | nan | 0.9872 | 0.0 | 0.9872 |
|
75 |
+
| 0.0232 | 1.03 | 360 | 0.0251 | 0.4923 | 0.9847 | 0.9847 | nan | 0.9847 | 0.0 | 0.9847 |
|
76 |
+
| 0.0304 | 1.09 | 380 | 0.0240 | 0.4917 | 0.9835 | 0.9835 | nan | 0.9835 | 0.0 | 0.9835 |
|
77 |
+
| 0.0451 | 1.15 | 400 | 0.0261 | 0.4964 | 0.9927 | 0.9927 | nan | 0.9927 | 0.0 | 0.9927 |
|
78 |
+
| 0.0254 | 1.2 | 420 | 0.0234 | 0.4929 | 0.9859 | 0.9859 | nan | 0.9859 | 0.0 | 0.9859 |
|
79 |
+
| 0.0354 | 1.26 | 440 | 0.0229 | 0.4931 | 0.9861 | 0.9861 | nan | 0.9861 | 0.0 | 0.9861 |
|
80 |
+
| 0.2103 | 1.32 | 460 | 0.0224 | 0.4951 | 0.9902 | 0.9902 | nan | 0.9902 | 0.0 | 0.9902 |
|
81 |
+
| 0.041 | 1.38 | 480 | 0.0222 | 0.4920 | 0.9839 | 0.9839 | nan | 0.9839 | 0.0 | 0.9839 |
|
82 |
+
| 0.0297 | 1.43 | 500 | 0.0223 | 0.4950 | 0.9900 | 0.9900 | nan | 0.9900 | 0.0 | 0.9900 |
|
83 |
+
| 0.0299 | 1.49 | 520 | 0.0227 | 0.4961 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 | 0.9923 |
|
84 |
+
| 0.0213 | 1.55 | 540 | 0.0209 | 0.4947 | 0.9895 | 0.9895 | nan | 0.9895 | 0.0 | 0.9895 |
|
85 |
+
| 0.0269 | 1.6 | 560 | 0.0214 | 0.4909 | 0.9817 | 0.9817 | nan | 0.9817 | 0.0 | 0.9817 |
|
86 |
+
| 0.2199 | 1.66 | 580 | 0.0216 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 |
|
87 |
+
| 0.0191 | 1.72 | 600 | 0.0208 | 0.4935 | 0.9869 | 0.9869 | nan | 0.9869 | 0.0 | 0.9869 |
|
88 |
+
| 0.0265 | 1.78 | 620 | 0.0201 | 0.4941 | 0.9882 | 0.9882 | nan | 0.9882 | 0.0 | 0.9882 |
|
89 |
+
| 0.0244 | 1.83 | 640 | 0.0213 | 0.4910 | 0.9820 | 0.9820 | nan | 0.9820 | 0.0 | 0.9820 |
|
90 |
+
| 0.0172 | 1.89 | 660 | 0.0199 | 0.4929 | 0.9858 | 0.9858 | nan | 0.9858 | 0.0 | 0.9858 |
|
91 |
+
| 0.0339 | 1.95 | 680 | 0.0190 | 0.4930 | 0.9859 | 0.9859 | nan | 0.9859 | 0.0 | 0.9859 |
|
92 |
+
| 0.027 | 2.01 | 700 | 0.0192 | 0.4953 | 0.9906 | 0.9906 | nan | 0.9906 | 0.0 | 0.9906 |
|
93 |
+
| 0.0221 | 2.06 | 720 | 0.0195 | 0.4915 | 0.9830 | 0.9830 | nan | 0.9830 | 0.0 | 0.9830 |
|
94 |
+
| 0.0461 | 2.12 | 740 | 0.0188 | 0.4953 | 0.9905 | 0.9905 | nan | 0.9905 | 0.0 | 0.9905 |
|
95 |
+
| 0.0444 | 2.18 | 760 | 0.0189 | 0.4957 | 0.9914 | 0.9914 | nan | 0.9914 | 0.0 | 0.9914 |
|
96 |
+
| 0.0211 | 2.23 | 780 | 0.0184 | 0.4949 | 0.9898 | 0.9898 | nan | 0.9898 | 0.0 | 0.9898 |
|
97 |
+
| 0.0221 | 2.29 | 800 | 0.0186 | 0.4963 | 0.9925 | 0.9925 | nan | 0.9925 | 0.0 | 0.9925 |
|
98 |
+
| 0.0165 | 2.35 | 820 | 0.0181 | 0.4942 | 0.9883 | 0.9883 | nan | 0.9883 | 0.0 | 0.9883 |
|
99 |
+
| 0.0171 | 2.41 | 840 | 0.0181 | 0.4923 | 0.9846 | 0.9846 | nan | 0.9846 | 0.0 | 0.9846 |
|
100 |
+
| 0.0202 | 2.46 | 860 | 0.0178 | 0.4958 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
|
101 |
+
| 0.0222 | 2.52 | 880 | 0.0178 | 0.4922 | 0.9844 | 0.9844 | nan | 0.9844 | 0.0 | 0.9844 |
|
102 |
+
| 0.018 | 2.58 | 900 | 0.0162 | 0.4949 | 0.9898 | 0.9898 | nan | 0.9898 | 0.0 | 0.9898 |
|
103 |
+
| 0.0288 | 2.64 | 920 | 0.0168 | 0.4943 | 0.9887 | 0.9887 | nan | 0.9887 | 0.0 | 0.9887 |
|
104 |
+
| 0.016 | 2.69 | 940 | 0.0178 | 0.4968 | 0.9936 | 0.9936 | nan | 0.9936 | 0.0 | 0.9936 |
|
105 |
+
| 0.0184 | 2.75 | 960 | 0.0172 | 0.4935 | 0.9870 | 0.9870 | nan | 0.9870 | 0.0 | 0.9870 |
|
106 |
+
| 0.0172 | 2.81 | 980 | 0.0175 | 0.4950 | 0.9900 | 0.9900 | nan | 0.9900 | 0.0 | 0.9900 |
|
107 |
+
| 0.0168 | 2.87 | 1000 | 0.0172 | 0.4951 | 0.9902 | 0.9902 | nan | 0.9902 | 0.0 | 0.9902 |
|
108 |
+
| 0.0197 | 2.92 | 1020 | 0.0169 | 0.4961 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 | 0.9923 |
|
109 |
+
| 0.0177 | 2.98 | 1040 | 0.0170 | 0.4961 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 | 0.9922 |
|
110 |
+
| 0.0377 | 3.04 | 1060 | 0.0163 | 0.4944 | 0.9888 | 0.9888 | nan | 0.9888 | 0.0 | 0.9888 |
|
111 |
+
| 0.0168 | 3.09 | 1080 | 0.0162 | 0.4953 | 0.9906 | 0.9906 | nan | 0.9906 | 0.0 | 0.9906 |
|
112 |
+
| 0.0167 | 3.15 | 1100 | 0.0166 | 0.4961 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 | 0.9922 |
|
113 |
+
| 0.0213 | 3.21 | 1120 | 0.0164 | 0.4948 | 0.9895 | 0.9895 | nan | 0.9895 | 0.0 | 0.9895 |
|
114 |
+
| 0.0195 | 3.27 | 1140 | 0.0162 | 0.4947 | 0.9894 | 0.9894 | nan | 0.9894 | 0.0 | 0.9894 |
|
115 |
+
| 0.014 | 3.32 | 1160 | 0.0160 | 0.4950 | 0.9900 | 0.9900 | nan | 0.9900 | 0.0 | 0.9900 |
|
116 |
+
| 0.0221 | 3.38 | 1180 | 0.0164 | 0.4961 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 | 0.9922 |
|
117 |
+
| 0.0162 | 3.44 | 1200 | 0.0159 | 0.4945 | 0.9890 | 0.9890 | nan | 0.9890 | 0.0 | 0.9890 |
|
118 |
+
| 0.0153 | 3.5 | 1220 | 0.0152 | 0.4957 | 0.9914 | 0.9914 | nan | 0.9914 | 0.0 | 0.9914 |
|
119 |
+
| 0.0145 | 3.55 | 1240 | 0.0161 | 0.4935 | 0.9871 | 0.9871 | nan | 0.9871 | 0.0 | 0.9871 |
|
120 |
+
| 0.0139 | 3.61 | 1260 | 0.0155 | 0.4951 | 0.9902 | 0.9902 | nan | 0.9902 | 0.0 | 0.9902 |
|
121 |
+
| 0.0153 | 3.67 | 1280 | 0.0157 | 0.4942 | 0.9884 | 0.9884 | nan | 0.9884 | 0.0 | 0.9884 |
|
122 |
+
| 0.0156 | 3.72 | 1300 | 0.0157 | 0.4949 | 0.9898 | 0.9898 | nan | 0.9898 | 0.0 | 0.9898 |
|
123 |
+
| 0.033 | 3.78 | 1320 | 0.0157 | 0.4952 | 0.9903 | 0.9903 | nan | 0.9903 | 0.0 | 0.9903 |
|
124 |
+
| 0.0219 | 3.84 | 1340 | 0.0153 | 0.4957 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
|
125 |
+
| 0.0166 | 3.9 | 1360 | 0.0162 | 0.4935 | 0.9871 | 0.9871 | nan | 0.9871 | 0.0 | 0.9871 |
|
126 |
+
| 0.0168 | 3.95 | 1380 | 0.0157 | 0.4949 | 0.9897 | 0.9897 | nan | 0.9897 | 0.0 | 0.9897 |
|
127 |
+
| 0.0177 | 4.01 | 1400 | 0.0153 | 0.4966 | 0.9932 | 0.9932 | nan | 0.9932 | 0.0 | 0.9932 |
|
128 |
+
| 0.0136 | 4.07 | 1420 | 0.0150 | 0.4952 | 0.9905 | 0.9905 | nan | 0.9905 | 0.0 | 0.9905 |
|
129 |
+
| 0.0334 | 4.13 | 1440 | 0.0156 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 |
|
130 |
+
| 0.019 | 4.18 | 1460 | 0.0154 | 0.4950 | 0.9899 | 0.9899 | nan | 0.9899 | 0.0 | 0.9899 |
|
131 |
+
| 0.0147 | 4.24 | 1480 | 0.0148 | 0.4960 | 0.9920 | 0.9920 | nan | 0.9920 | 0.0 | 0.9920 |
|
132 |
+
| 0.0135 | 4.3 | 1500 | 0.0146 | 0.4951 | 0.9902 | 0.9902 | nan | 0.9902 | 0.0 | 0.9902 |
|
133 |
+
| 0.0186 | 4.36 | 1520 | 0.0143 | 0.4966 | 0.9933 | 0.9933 | nan | 0.9933 | 0.0 | 0.9933 |
|
134 |
+
| 0.0153 | 4.41 | 1540 | 0.0141 | 0.4954 | 0.9909 | 0.9909 | nan | 0.9909 | 0.0 | 0.9909 |
|
135 |
+
| 0.0181 | 4.47 | 1560 | 0.0145 | 0.4954 | 0.9908 | 0.9908 | nan | 0.9908 | 0.0 | 0.9908 |
|
136 |
+
| 0.0266 | 4.53 | 1580 | 0.0146 | 0.4953 | 0.9907 | 0.9907 | nan | 0.9907 | 0.0 | 0.9907 |
|
137 |
+
| 0.0141 | 4.58 | 1600 | 0.0147 | 0.4952 | 0.9904 | 0.9904 | nan | 0.9904 | 0.0 | 0.9904 |
|
138 |
+
| 0.0145 | 4.64 | 1620 | 0.0150 | 0.4947 | 0.9894 | 0.9894 | nan | 0.9894 | 0.0 | 0.9894 |
|
139 |
+
| 0.0128 | 4.7 | 1640 | 0.0151 | 0.4964 | 0.9928 | 0.9928 | nan | 0.9928 | 0.0 | 0.9928 |
|
140 |
+
| 0.0119 | 4.76 | 1660 | 0.0143 | 0.4948 | 0.9897 | 0.9897 | nan | 0.9897 | 0.0 | 0.9897 |
|
141 |
+
| 0.0133 | 4.81 | 1680 | 0.0144 | 0.4950 | 0.9900 | 0.9900 | nan | 0.9900 | 0.0 | 0.9900 |
|
142 |
+
| 0.0151 | 4.87 | 1700 | 0.0143 | 0.4956 | 0.9911 | 0.9911 | nan | 0.9911 | 0.0 | 0.9911 |
|
143 |
+
| 0.0211 | 4.93 | 1720 | 0.0149 | 0.4965 | 0.9930 | 0.9930 | nan | 0.9930 | 0.0 | 0.9930 |
|
144 |
+
| 0.0136 | 4.99 | 1740 | 0.0144 | 0.4964 | 0.9928 | 0.9928 | nan | 0.9928 | 0.0 | 0.9928 |
|
145 |
+
| 0.0129 | 5.04 | 1760 | 0.0142 | 0.4967 | 0.9934 | 0.9934 | nan | 0.9934 | 0.0 | 0.9934 |
|
146 |
+
| 0.0176 | 5.1 | 1780 | 0.0142 | 0.4965 | 0.9930 | 0.9930 | nan | 0.9930 | 0.0 | 0.9930 |
|
147 |
+
| 0.0119 | 5.16 | 1800 | 0.0141 | 0.4958 | 0.9916 | 0.9916 | nan | 0.9916 | 0.0 | 0.9916 |
|
148 |
+
| 0.021 | 5.21 | 1820 | 0.0143 | 0.4960 | 0.9920 | 0.9920 | nan | 0.9920 | 0.0 | 0.9920 |
|
149 |
+
| 0.0146 | 5.27 | 1840 | 0.0137 | 0.4961 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 | 0.9922 |
|
150 |
+
| 0.0158 | 5.33 | 1860 | 0.0138 | 0.4953 | 0.9905 | 0.9905 | nan | 0.9905 | 0.0 | 0.9905 |
|
151 |
+
| 0.014 | 5.39 | 1880 | 0.0142 | 0.4956 | 0.9913 | 0.9913 | nan | 0.9913 | 0.0 | 0.9913 |
|
152 |
+
| 0.0145 | 5.44 | 1900 | 0.0145 | 0.4952 | 0.9905 | 0.9905 | nan | 0.9905 | 0.0 | 0.9905 |
|
153 |
+
| 0.019 | 5.5 | 1920 | 0.0145 | 0.4960 | 0.9920 | 0.9920 | nan | 0.9920 | 0.0 | 0.9920 |
|
154 |
+
| 0.0134 | 5.56 | 1940 | 0.0143 | 0.4958 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
|
155 |
+
| 0.011 | 5.62 | 1960 | 0.0141 | 0.4955 | 0.9910 | 0.9910 | nan | 0.9910 | 0.0 | 0.9910 |
|
156 |
+
| 0.0159 | 5.67 | 1980 | 0.0143 | 0.4971 | 0.9942 | 0.9942 | nan | 0.9942 | 0.0 | 0.9942 |
|
157 |
+
| 0.0132 | 5.73 | 2000 | 0.0140 | 0.4966 | 0.9933 | 0.9933 | nan | 0.9933 | 0.0 | 0.9933 |
|
158 |
+
| 0.017 | 5.79 | 2020 | 0.0136 | 0.4964 | 0.9928 | 0.9928 | nan | 0.9928 | 0.0 | 0.9928 |
|
159 |
+
| 0.0156 | 5.85 | 2040 | 0.0139 | 0.4951 | 0.9902 | 0.9902 | nan | 0.9902 | 0.0 | 0.9902 |
|
160 |
+
| 0.0169 | 5.9 | 2060 | 0.0142 | 0.4943 | 0.9887 | 0.9887 | nan | 0.9887 | 0.0 | 0.9887 |
|
161 |
+
| 0.0337 | 5.96 | 2080 | 0.0145 | 0.4967 | 0.9933 | 0.9933 | nan | 0.9933 | 0.0 | 0.9933 |
|
162 |
+
| 0.0158 | 6.02 | 2100 | 0.0141 | 0.4949 | 0.9898 | 0.9898 | nan | 0.9898 | 0.0 | 0.9898 |
|
163 |
+
| 0.0401 | 6.07 | 2120 | 0.0139 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 |
|
164 |
+
| 0.0629 | 6.13 | 2140 | 0.0138 | 0.4952 | 0.9904 | 0.9904 | nan | 0.9904 | 0.0 | 0.9904 |
|
165 |
+
| 0.0143 | 6.19 | 2160 | 0.0142 | 0.4967 | 0.9935 | 0.9935 | nan | 0.9935 | 0.0 | 0.9935 |
|
166 |
+
| 0.0133 | 6.25 | 2180 | 0.0135 | 0.4957 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
|
167 |
+
| 0.0326 | 6.3 | 2200 | 0.0139 | 0.4963 | 0.9925 | 0.9925 | nan | 0.9925 | 0.0 | 0.9925 |
|
168 |
+
| 0.0141 | 6.36 | 2220 | 0.0133 | 0.4955 | 0.9910 | 0.9910 | nan | 0.9910 | 0.0 | 0.9910 |
|
169 |
+
| 0.0119 | 6.42 | 2240 | 0.0134 | 0.4958 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
|
170 |
+
| 0.0133 | 6.48 | 2260 | 0.0139 | 0.4962 | 0.9924 | 0.9924 | nan | 0.9924 | 0.0 | 0.9924 |
|
171 |
+
| 0.0123 | 6.53 | 2280 | 0.0138 | 0.4967 | 0.9934 | 0.9934 | nan | 0.9934 | 0.0 | 0.9934 |
|
172 |
+
| 0.014 | 6.59 | 2300 | 0.0138 | 0.4962 | 0.9925 | 0.9925 | nan | 0.9925 | 0.0 | 0.9925 |
|
173 |
+
| 0.0137 | 6.65 | 2320 | 0.0136 | 0.4958 | 0.9916 | 0.9916 | nan | 0.9916 | 0.0 | 0.9916 |
|
174 |
+
| 0.0173 | 6.7 | 2340 | 0.0138 | 0.4964 | 0.9928 | 0.9928 | nan | 0.9928 | 0.0 | 0.9928 |
|
175 |
+
| 0.0137 | 6.76 | 2360 | 0.0136 | 0.4953 | 0.9905 | 0.9905 | nan | 0.9905 | 0.0 | 0.9905 |
|
176 |
+
| 0.0153 | 6.82 | 2380 | 0.0134 | 0.4958 | 0.9916 | 0.9916 | nan | 0.9916 | 0.0 | 0.9916 |
|
177 |
+
| 0.0135 | 6.88 | 2400 | 0.0137 | 0.4963 | 0.9926 | 0.9926 | nan | 0.9926 | 0.0 | 0.9926 |
|
178 |
+
| 0.0151 | 6.93 | 2420 | 0.0137 | 0.4952 | 0.9904 | 0.9904 | nan | 0.9904 | 0.0 | 0.9904 |
|
179 |
+
| 0.0122 | 6.99 | 2440 | 0.0134 | 0.4959 | 0.9918 | 0.9918 | nan | 0.9918 | 0.0 | 0.9918 |
|
180 |
+
| 0.013 | 7.05 | 2460 | 0.0135 | 0.4970 | 0.9941 | 0.9941 | nan | 0.9941 | 0.0 | 0.9941 |
|
181 |
+
| 0.0134 | 7.11 | 2480 | 0.0133 | 0.4964 | 0.9928 | 0.9928 | nan | 0.9928 | 0.0 | 0.9928 |
|
182 |
+
| 0.0145 | 7.16 | 2500 | 0.0134 | 0.4962 | 0.9924 | 0.9924 | nan | 0.9924 | 0.0 | 0.9924 |
|
183 |
+
| 0.028 | 7.22 | 2520 | 0.0135 | 0.4962 | 0.9924 | 0.9924 | nan | 0.9924 | 0.0 | 0.9924 |
|
184 |
+
| 0.0288 | 7.28 | 2540 | 0.0137 | 0.4967 | 0.9933 | 0.9933 | nan | 0.9933 | 0.0 | 0.9933 |
|
185 |
+
| 0.0117 | 7.34 | 2560 | 0.0135 | 0.4964 | 0.9927 | 0.9927 | nan | 0.9927 | 0.0 | 0.9927 |
|
186 |
+
| 0.013 | 7.39 | 2580 | 0.0136 | 0.4966 | 0.9932 | 0.9932 | nan | 0.9932 | 0.0 | 0.9932 |
|
187 |
+
| 0.0158 | 7.45 | 2600 | 0.0134 | 0.4950 | 0.9899 | 0.9899 | nan | 0.9899 | 0.0 | 0.9899 |
|
188 |
+
| 0.0135 | 7.51 | 2620 | 0.0134 | 0.4964 | 0.9928 | 0.9928 | nan | 0.9928 | 0.0 | 0.9928 |
|
189 |
+
| 0.0136 | 7.56 | 2640 | 0.0140 | 0.4967 | 0.9935 | 0.9935 | nan | 0.9935 | 0.0 | 0.9935 |
|
190 |
+
| 0.0396 | 7.62 | 2660 | 0.0133 | 0.4961 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 | 0.9922 |
|
191 |
+
| 0.0109 | 7.68 | 2680 | 0.0134 | 0.4963 | 0.9925 | 0.9925 | nan | 0.9925 | 0.0 | 0.9925 |
|
192 |
+
| 0.0148 | 7.74 | 2700 | 0.0133 | 0.4963 | 0.9925 | 0.9925 | nan | 0.9925 | 0.0 | 0.9925 |
|
193 |
+
| 0.0121 | 7.79 | 2720 | 0.0140 | 0.4945 | 0.9890 | 0.9890 | nan | 0.9890 | 0.0 | 0.9890 |
|
194 |
+
| 0.0109 | 7.85 | 2740 | 0.0139 | 0.4957 | 0.9913 | 0.9913 | nan | 0.9913 | 0.0 | 0.9913 |
|
195 |
+
| 0.014 | 7.91 | 2760 | 0.0135 | 0.4957 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
|
196 |
+
| 0.0199 | 7.97 | 2780 | 0.0134 | 0.4959 | 0.9917 | 0.9917 | nan | 0.9917 | 0.0 | 0.9917 |
|
197 |
+
| 0.0119 | 8.02 | 2800 | 0.0136 | 0.4958 | 0.9916 | 0.9916 | nan | 0.9916 | 0.0 | 0.9916 |
|
198 |
+
| 0.0129 | 8.08 | 2820 | 0.0136 | 0.4962 | 0.9924 | 0.9924 | nan | 0.9924 | 0.0 | 0.9924 |
|
199 |
+
| 0.0108 | 8.14 | 2840 | 0.0134 | 0.4959 | 0.9917 | 0.9917 | nan | 0.9917 | 0.0 | 0.9917 |
|
200 |
+
| 0.0209 | 8.19 | 2860 | 0.0136 | 0.4960 | 0.9920 | 0.9920 | nan | 0.9920 | 0.0 | 0.9920 |
|
201 |
+
| 0.0154 | 8.25 | 2880 | 0.0137 | 0.4964 | 0.9928 | 0.9928 | nan | 0.9928 | 0.0 | 0.9928 |
|
202 |
+
| 0.0141 | 8.31 | 2900 | 0.0132 | 0.4965 | 0.9929 | 0.9929 | nan | 0.9929 | 0.0 | 0.9929 |
|
203 |
+
| 0.0187 | 8.37 | 2920 | 0.0131 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 |
|
204 |
+
| 0.0124 | 8.42 | 2940 | 0.0133 | 0.4959 | 0.9918 | 0.9918 | nan | 0.9918 | 0.0 | 0.9918 |
|
205 |
+
| 0.0135 | 8.48 | 2960 | 0.0132 | 0.4963 | 0.9926 | 0.9926 | nan | 0.9926 | 0.0 | 0.9926 |
|
206 |
+
| 0.0283 | 8.54 | 2980 | 0.0131 | 0.4958 | 0.9917 | 0.9917 | nan | 0.9917 | 0.0 | 0.9917 |
|
207 |
+
| 0.0691 | 8.6 | 3000 | 0.0131 | 0.4965 | 0.9930 | 0.9930 | nan | 0.9930 | 0.0 | 0.9930 |
|
208 |
+
| 0.0142 | 8.65 | 3020 | 0.0131 | 0.4965 | 0.9929 | 0.9929 | nan | 0.9929 | 0.0 | 0.9929 |
|
209 |
+
| 0.0155 | 8.71 | 3040 | 0.0130 | 0.4966 | 0.9931 | 0.9931 | nan | 0.9931 | 0.0 | 0.9931 |
|
210 |
+
| 0.0115 | 8.77 | 3060 | 0.0129 | 0.4966 | 0.9932 | 0.9932 | nan | 0.9932 | 0.0 | 0.9932 |
|
211 |
+
| 0.0095 | 8.83 | 3080 | 0.0130 | 0.4963 | 0.9927 | 0.9927 | nan | 0.9927 | 0.0 | 0.9927 |
|
212 |
+
| 0.012 | 8.88 | 3100 | 0.0132 | 0.4954 | 0.9907 | 0.9907 | nan | 0.9907 | 0.0 | 0.9907 |
|
213 |
+
| 0.0153 | 8.94 | 3120 | 0.0132 | 0.4965 | 0.9930 | 0.9930 | nan | 0.9930 | 0.0 | 0.9930 |
|
214 |
+
| 0.0141 | 9.0 | 3140 | 0.0134 | 0.4958 | 0.9917 | 0.9917 | nan | 0.9917 | 0.0 | 0.9917 |
|
215 |
+
| 0.0141 | 9.05 | 3160 | 0.0133 | 0.4958 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
|
216 |
+
| 0.016 | 9.11 | 3180 | 0.0133 | 0.4964 | 0.9929 | 0.9929 | nan | 0.9929 | 0.0 | 0.9929 |
|
217 |
+
| 0.017 | 9.17 | 3200 | 0.0132 | 0.4965 | 0.9929 | 0.9929 | nan | 0.9929 | 0.0 | 0.9929 |
|
218 |
+
| 0.0245 | 9.23 | 3220 | 0.0132 | 0.4961 | 0.9921 | 0.9921 | nan | 0.9921 | 0.0 | 0.9921 |
|
219 |
+
| 0.0101 | 9.28 | 3240 | 0.0132 | 0.4962 | 0.9924 | 0.9924 | nan | 0.9924 | 0.0 | 0.9924 |
|
220 |
+
| 0.012 | 9.34 | 3260 | 0.0133 | 0.4959 | 0.9917 | 0.9917 | nan | 0.9917 | 0.0 | 0.9917 |
|
221 |
+
| 0.0111 | 9.4 | 3280 | 0.0133 | 0.4964 | 0.9928 | 0.9928 | nan | 0.9928 | 0.0 | 0.9928 |
|
222 |
+
| 0.0148 | 9.46 | 3300 | 0.0132 | 0.4962 | 0.9925 | 0.9925 | nan | 0.9925 | 0.0 | 0.9925 |
|
223 |
+
| 0.0124 | 9.51 | 3320 | 0.0135 | 0.4967 | 0.9934 | 0.9934 | nan | 0.9934 | 0.0 | 0.9934 |
|
224 |
+
| 0.0209 | 9.57 | 3340 | 0.0133 | 0.4963 | 0.9926 | 0.9926 | nan | 0.9926 | 0.0 | 0.9926 |
|
225 |
+
| 0.0134 | 9.63 | 3360 | 0.0132 | 0.4960 | 0.9920 | 0.9920 | nan | 0.9920 | 0.0 | 0.9920 |
|
226 |
+
| 0.0146 | 9.68 | 3380 | 0.0132 | 0.4958 | 0.9916 | 0.9916 | nan | 0.9916 | 0.0 | 0.9916 |
|
227 |
+
| 0.0217 | 9.74 | 3400 | 0.0132 | 0.4961 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 | 0.9923 |
|
228 |
+
| 0.0142 | 9.8 | 3420 | 0.0131 | 0.4961 | 0.9923 | 0.9923 | nan | 0.9923 | 0.0 | 0.9923 |
|
229 |
+
| 0.0134 | 9.86 | 3440 | 0.0131 | 0.4959 | 0.9918 | 0.9918 | nan | 0.9918 | 0.0 | 0.9918 |
|
230 |
+
| 0.0131 | 9.91 | 3460 | 0.0131 | 0.4960 | 0.9920 | 0.9920 | nan | 0.9920 | 0.0 | 0.9920 |
|
231 |
+
| 0.0136 | 9.97 | 3480 | 0.0131 | 0.4961 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 | 0.9922 |
|
232 |
+
|
233 |
+
|
234 |
+
### Framework versions
|
235 |
+
|
236 |
+
- Transformers 4.35.0
|
237 |
+
- Pytorch 2.2.2
|
238 |
+
- Datasets 2.14.6
|
239 |
+
- Tokenizers 0.14.1
|
config.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b5",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
6,
|
12 |
+
40,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "background",
|
32 |
+
"1": "object"
|
33 |
+
},
|
34 |
+
"image_size": 224,
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"label2id": {
|
37 |
+
"background": 0,
|
38 |
+
"object": 1
|
39 |
+
},
|
40 |
+
"layer_norm_eps": 1e-06,
|
41 |
+
"mlp_ratios": [
|
42 |
+
4,
|
43 |
+
4,
|
44 |
+
4,
|
45 |
+
4
|
46 |
+
],
|
47 |
+
"model_type": "segformer",
|
48 |
+
"num_attention_heads": [
|
49 |
+
1,
|
50 |
+
2,
|
51 |
+
5,
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"num_channels": 3,
|
55 |
+
"num_encoder_blocks": 4,
|
56 |
+
"patch_sizes": [
|
57 |
+
7,
|
58 |
+
3,
|
59 |
+
3,
|
60 |
+
3
|
61 |
+
],
|
62 |
+
"reshape_last_stage": true,
|
63 |
+
"semantic_loss_ignore_index": 255,
|
64 |
+
"sr_ratios": [
|
65 |
+
8,
|
66 |
+
4,
|
67 |
+
2,
|
68 |
+
1
|
69 |
+
],
|
70 |
+
"strides": [
|
71 |
+
4,
|
72 |
+
2,
|
73 |
+
2,
|
74 |
+
2
|
75 |
+
],
|
76 |
+
"torch_dtype": "float32",
|
77 |
+
"transformers_version": "4.35.0"
|
78 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0463f14245fdf50541df859ccfd0a36fa53725e653584153da514796e46af173
|
3 |
+
size 338528440
|
runs/Apr26_02-20-57_Vigneshs-MacBook-Pro.local/events.out.tfevents.1714078560.Vigneshs-MacBook-Pro.local.30689.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b30b96283f7d89efa98ddff8856a5f3402f21ec2f021d00d3661520ddb002db
|
3 |
+
size 669848
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c92f192edac5b33075c0a78c7f99428b5056a0f0b6cf1f495f41231750bd1450
|
3 |
+
size 4600
|