|
from diffsynth import ModelManager, FluxImagePipeline, download_customized_models |
|
from modelscope import dataset_snapshot_download |
|
from examples.EntityControl.utils import visualize_masks |
|
from PIL import Image |
|
import torch |
|
|
|
|
|
def build_pipeline(): |
|
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cuda", model_id_list=["FLUX.1-dev"]) |
|
model_manager.load_lora( |
|
download_customized_models( |
|
model_id="DiffSynth-Studio/Eligen", |
|
origin_file_path="model_bf16.safetensors", |
|
local_dir="models/lora/entity_control" |
|
), |
|
lora_alpha=1 |
|
) |
|
model_manager.load_lora( |
|
download_customized_models( |
|
model_id="iic/In-Context-LoRA", |
|
origin_file_path="visual-identity-design.safetensors", |
|
local_dir="models/lora/In-Context-LoRA" |
|
), |
|
lora_alpha=1 |
|
) |
|
pipe = FluxImagePipeline.from_model_manager(model_manager) |
|
return pipe |
|
|
|
|
|
def generate(pipe: FluxImagePipeline, source_image, target_image, mask, height, width, prompt, entity_prompt, image_save_path, mask_save_path, seed=0): |
|
input_mask = Image.new('RGB', (width * 2, height)) |
|
input_mask.paste(mask.resize((width, height), resample=Image.NEAREST).convert('RGB'), (width, 0)) |
|
|
|
input_image = Image.new('RGB', (width * 2, height)) |
|
input_image.paste(source_image.resize((width, height)).convert('RGB'), (0, 0)) |
|
input_image.paste(target_image.resize((width, height)).convert('RGB'), (width, 0)) |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
input_image=input_image, |
|
cfg_scale=3.0, |
|
negative_prompt="", |
|
num_inference_steps=50, |
|
embedded_guidance=3.5, |
|
seed=seed, |
|
height=height, |
|
width=width * 2, |
|
eligen_entity_prompts=[entity_prompt], |
|
eligen_entity_masks=[input_mask], |
|
enable_eligen_on_negative=False, |
|
enable_eligen_inpaint=True, |
|
) |
|
target_image = image.crop((width, 0, 2 * width, height)) |
|
target_image.save(image_save_path) |
|
visualize_masks(target_image, [mask], [entity_prompt], mask_save_path) |
|
return target_image |
|
|
|
|
|
pipe = build_pipeline() |
|
|
|
dataset_snapshot_download(dataset_id="DiffSynth-Studio/examples_in_diffsynth", local_dir="./", allow_file_pattern="data/examples/eligen/logo_transfer/*") |
|
|
|
prompt="The two-panel image showcases the joyful identity, with the left panel showing a rabbit graphic; [LEFT] while the right panel translates the design onto a shopping tote with the rabbit logo in black, held by a person in a market setting, emphasizing the brand's approachable and eco-friendly vibe." |
|
logo_prompt="a rabbit logo" |
|
|
|
logo_image = Image.open("data/examples/eligen/logo_transfer/source_image.png") |
|
target_image = Image.open("data/examples/eligen/logo_transfer/target_image.png") |
|
mask = Image.open("data/examples/eligen/logo_transfer/mask_1.png") |
|
generate( |
|
pipe, logo_image, target_image, mask, |
|
height=1024, width=1024, |
|
prompt=prompt, entity_prompt=logo_prompt, |
|
image_save_path="entity_transfer_1.png", |
|
mask_save_path="entity_transfer_with_mask_1.png" |
|
) |
|
|
|
mask = Image.open("data/examples/eligen/logo_transfer/mask_2.png") |
|
generate( |
|
pipe, logo_image, target_image, mask, |
|
height=1024, width=1024, |
|
prompt=prompt, entity_prompt=logo_prompt, |
|
image_save_path="entity_transfer_2.png", |
|
mask_save_path="entity_transfer_with_mask_2.png" |
|
) |
|
|