Wav2 / examples /ControlNet /flux_controlnet_quantization.py
vidfom's picture
Upload folder using huggingface_hub
79dc332 verified
from diffsynth import ModelManager, FluxImagePipeline, ControlNetConfigUnit, download_models, download_customized_models
import torch
from PIL import Image
import numpy as np
def example_1():
download_models(["FLUX.1-dev", "jasperai/Flux.1-dev-Controlnet-Upscaler"])
model_manager = ModelManager(
torch_dtype=torch.bfloat16,
device="cpu"
)
model_manager.load_models([
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
"models/FLUX/FLUX.1-dev/text_encoder_2",
"models/FLUX/FLUX.1-dev/ae.safetensors",
])
model_manager.load_models(
["models/FLUX/FLUX.1-dev/flux1-dev.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
model_manager.load_models(
["models/ControlNet/jasperai/Flux.1-dev-Controlnet-Upscaler/diffusion_pytorch_model.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
pipe = FluxImagePipeline.from_model_manager(model_manager, controlnet_config_units=[
ControlNetConfigUnit(
processor_id="tile",
model_path="models/ControlNet/jasperai/Flux.1-dev-Controlnet-Upscaler/diffusion_pytorch_model.safetensors",
scale=0.7
),
],device="cuda")
pipe.enable_cpu_offload()
pipe.dit.quantize()
for model in pipe.controlnet.models:
model.quantize()
image_1 = pipe(
prompt="a photo of a cat, highly detailed",
height=768, width=768,
seed=0
)
image_1.save("image_1.jpg")
image_2 = pipe(
prompt="a photo of a cat, highly detailed",
controlnet_image=image_1.resize((2048, 2048)),
input_image=image_1.resize((2048, 2048)), denoising_strength=0.99,
height=2048, width=2048, tiled=True,
seed=1
)
image_2.save("image_2.jpg")
def example_2():
download_models(["FLUX.1-dev", "jasperai/Flux.1-dev-Controlnet-Upscaler"])
model_manager = ModelManager(
torch_dtype=torch.bfloat16,
device="cpu"
)
model_manager.load_models([
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
"models/FLUX/FLUX.1-dev/text_encoder_2",
"models/FLUX/FLUX.1-dev/ae.safetensors",
])
model_manager.load_models(
["models/FLUX/FLUX.1-dev/flux1-dev.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
model_manager.load_models(
["models/ControlNet/jasperai/Flux.1-dev-Controlnet-Upscaler/diffusion_pytorch_model.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
pipe = FluxImagePipeline.from_model_manager(model_manager, controlnet_config_units=[
ControlNetConfigUnit(
processor_id="tile",
model_path="models/ControlNet/jasperai/Flux.1-dev-Controlnet-Upscaler/diffusion_pytorch_model.safetensors",
scale=0.7
),
],device="cuda")
pipe.enable_cpu_offload()
pipe.dit.quantize()
for model in pipe.controlnet.models:
model.quantize()
image_1 = pipe(
prompt="a beautiful Chinese girl, delicate skin texture",
height=768, width=768,
seed=2
)
image_1.save("image_3.jpg")
image_2 = pipe(
prompt="a beautiful Chinese girl, delicate skin texture",
controlnet_image=image_1.resize((2048, 2048)),
input_image=image_1.resize((2048, 2048)), denoising_strength=0.99,
height=2048, width=2048, tiled=True,
seed=3
)
image_2.save("image_4.jpg")
def example_3():
download_models(["FLUX.1-dev", "InstantX/FLUX.1-dev-Controlnet-Union-alpha"])
model_manager = ModelManager(
torch_dtype=torch.bfloat16,
device="cpu"
)
model_manager.load_models([
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
"models/FLUX/FLUX.1-dev/text_encoder_2",
"models/FLUX/FLUX.1-dev/ae.safetensors",
])
model_manager.load_models(
["models/FLUX/FLUX.1-dev/flux1-dev.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
model_manager.load_models(
["models/ControlNet/InstantX/FLUX.1-dev-Controlnet-Union-alpha/diffusion_pytorch_model.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
pipe = FluxImagePipeline.from_model_manager(model_manager, controlnet_config_units=[
ControlNetConfigUnit(
processor_id="canny",
model_path="models/ControlNet/InstantX/FLUX.1-dev-Controlnet-Union-alpha/diffusion_pytorch_model.safetensors",
scale=0.3
),
ControlNetConfigUnit(
processor_id="depth",
model_path="models/ControlNet/InstantX/FLUX.1-dev-Controlnet-Union-alpha/diffusion_pytorch_model.safetensors",
scale=0.3
),
],device="cuda")
pipe.enable_cpu_offload()
pipe.dit.quantize()
for model in pipe.controlnet.models:
model.quantize()
image_1 = pipe(
prompt="a cat is running",
height=1024, width=1024,
seed=4
)
image_1.save("image_5.jpg")
image_2 = pipe(
prompt="sunshine, a cat is running",
controlnet_image=image_1,
height=1024, width=1024,
seed=5
)
image_2.save("image_6.jpg")
def example_4():
download_models(["FLUX.1-dev", "InstantX/FLUX.1-dev-Controlnet-Union-alpha"])
model_manager = ModelManager(
torch_dtype=torch.bfloat16,
device="cpu"
)
model_manager.load_models([
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
"models/FLUX/FLUX.1-dev/text_encoder_2",
"models/FLUX/FLUX.1-dev/ae.safetensors",
])
model_manager.load_models(
["models/FLUX/FLUX.1-dev/flux1-dev.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
model_manager.load_models(
["models/ControlNet/InstantX/FLUX.1-dev-Controlnet-Union-alpha/diffusion_pytorch_model.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
pipe = FluxImagePipeline.from_model_manager(model_manager, controlnet_config_units=[
ControlNetConfigUnit(
processor_id="canny",
model_path="models/ControlNet/InstantX/FLUX.1-dev-Controlnet-Union-alpha/diffusion_pytorch_model.safetensors",
scale=0.3
),
ControlNetConfigUnit(
processor_id="depth",
model_path="models/ControlNet/InstantX/FLUX.1-dev-Controlnet-Union-alpha/diffusion_pytorch_model.safetensors",
scale=0.3
),
],device="cuda")
pipe.enable_cpu_offload()
pipe.dit.quantize()
for model in pipe.controlnet.models:
model.quantize()
image_1 = pipe(
prompt="a beautiful Asian girl, full body, red dress, summer",
height=1024, width=1024,
seed=6
)
image_1.save("image_7.jpg")
image_2 = pipe(
prompt="a beautiful Asian girl, full body, red dress, winter",
controlnet_image=image_1,
height=1024, width=1024,
seed=7
)
image_2.save("image_8.jpg")
def example_5():
download_models(["FLUX.1-dev", "alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta"])
model_manager = ModelManager(
torch_dtype=torch.bfloat16,
device="cpu"
)
model_manager.load_models([
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
"models/FLUX/FLUX.1-dev/text_encoder_2",
"models/FLUX/FLUX.1-dev/ae.safetensors",
])
model_manager.load_models(
["models/FLUX/FLUX.1-dev/flux1-dev.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
model_manager.load_models(
["models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta/diffusion_pytorch_model.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
pipe = FluxImagePipeline.from_model_manager(model_manager, controlnet_config_units=[
ControlNetConfigUnit(
processor_id="inpaint",
model_path="models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta/diffusion_pytorch_model.safetensors",
scale=0.9
),
],device="cuda")
pipe.enable_cpu_offload()
pipe.dit.quantize()
for model in pipe.controlnet.models:
model.quantize()
image_1 = pipe(
prompt="a cat sitting on a chair",
height=1024, width=1024,
seed=8
)
image_1.save("image_9.jpg")
mask = np.zeros((1024, 1024, 3), dtype=np.uint8)
mask[100:350, 350: -300] = 255
mask = Image.fromarray(mask)
mask.save("mask_9.jpg")
image_2 = pipe(
prompt="a cat sitting on a chair, wearing sunglasses",
controlnet_image=image_1, controlnet_inpaint_mask=mask,
height=1024, width=1024,
seed=9
)
image_2.save("image_10.jpg")
def example_6():
download_models([
"FLUX.1-dev",
"jasperai/Flux.1-dev-Controlnet-Surface-Normals",
"alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta"
])
model_manager = ModelManager(
torch_dtype=torch.bfloat16,
device="cpu"
)
model_manager.load_models([
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
"models/FLUX/FLUX.1-dev/text_encoder_2",
"models/FLUX/FLUX.1-dev/ae.safetensors",
])
model_manager.load_models(
["models/FLUX/FLUX.1-dev/flux1-dev.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
model_manager.load_models(
["models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta/diffusion_pytorch_model.safetensors",
"models/ControlNet/jasperai/Flux.1-dev-Controlnet-Surface-Normals/diffusion_pytorch_model.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
pipe = FluxImagePipeline.from_model_manager(model_manager, controlnet_config_units=[
ControlNetConfigUnit(
processor_id="inpaint",
model_path="models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta/diffusion_pytorch_model.safetensors",
scale=0.9
),
ControlNetConfigUnit(
processor_id="normal",
model_path="models/ControlNet/jasperai/Flux.1-dev-Controlnet-Surface-Normals/diffusion_pytorch_model.safetensors",
scale=0.6
),
],device="cuda")
pipe.enable_cpu_offload()
pipe.dit.quantize()
for model in pipe.controlnet.models:
model.quantize()
image_1 = pipe(
prompt="a beautiful Asian woman looking at the sky, wearing a blue t-shirt.",
height=1024, width=1024,
seed=10
)
image_1.save("image_11.jpg")
mask = np.zeros((1024, 1024, 3), dtype=np.uint8)
mask[-400:, 10:-40] = 255
mask = Image.fromarray(mask)
mask.save("mask_11.jpg")
image_2 = pipe(
prompt="a beautiful Asian woman looking at the sky, wearing a yellow t-shirt.",
controlnet_image=image_1, controlnet_inpaint_mask=mask,
height=1024, width=1024,
seed=11
)
image_2.save("image_12.jpg")
def example_7():
download_models([
"FLUX.1-dev",
"InstantX/FLUX.1-dev-Controlnet-Union-alpha",
"alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta",
"jasperai/Flux.1-dev-Controlnet-Upscaler",
])
model_manager = ModelManager(
torch_dtype=torch.bfloat16,
device="cpu"
)
model_manager.load_models([
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
"models/FLUX/FLUX.1-dev/text_encoder_2",
"models/FLUX/FLUX.1-dev/ae.safetensors",
])
model_manager.load_models(
["models/FLUX/FLUX.1-dev/flux1-dev.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
model_manager.load_models(
["models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta/diffusion_pytorch_model.safetensors",
"models/ControlNet/InstantX/FLUX.1-dev-Controlnet-Union-alpha/diffusion_pytorch_model.safetensors",
"models/ControlNet/jasperai/Flux.1-dev-Controlnet-Upscaler/diffusion_pytorch_model.safetensors"],
torch_dtype=torch.float8_e4m3fn
)
pipe = FluxImagePipeline.from_model_manager(model_manager, controlnet_config_units=[
ControlNetConfigUnit(
processor_id="inpaint",
model_path="models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta/diffusion_pytorch_model.safetensors",
scale=0.9
),
ControlNetConfigUnit(
processor_id="canny",
model_path="models/ControlNet/InstantX/FLUX.1-dev-Controlnet-Union-alpha/diffusion_pytorch_model.safetensors",
scale=0.5
),
],device="cuda")
pipe.enable_cpu_offload()
pipe.dit.quantize()
for model in pipe.controlnet.models:
model.quantize()
image_1 = pipe(
prompt="a beautiful Asian woman and a cat on a bed. The woman wears a dress.",
height=1024, width=1024,
seed=100
)
image_1.save("image_13.jpg")
mask_global = np.zeros((1024, 1024, 3), dtype=np.uint8)
mask_global = Image.fromarray(mask_global)
mask_global.save("mask_13_global.jpg")
mask_1 = np.zeros((1024, 1024, 3), dtype=np.uint8)
mask_1[300:-100, 30: 450] = 255
mask_1 = Image.fromarray(mask_1)
mask_1.save("mask_13_1.jpg")
mask_2 = np.zeros((1024, 1024, 3), dtype=np.uint8)
mask_2[500:-100, -400:] = 255
mask_2[-200:-100, -500:-400] = 255
mask_2 = Image.fromarray(mask_2)
mask_2.save("mask_13_2.jpg")
image_2 = pipe(
prompt="a beautiful Asian woman and a cat on a bed. The woman wears a dress.",
controlnet_image=image_1, controlnet_inpaint_mask=mask_global,
local_prompts=["an orange cat, highly detailed", "a girl wearing a red camisole"], masks=[mask_1, mask_2], mask_scales=[10.0, 10.0],
height=1024, width=1024,
seed=101
)
image_2.save("image_14.jpg")
model_manager.load_lora("models/lora/FLUX-dev-lora-AntiBlur.safetensors", lora_alpha=2)
image_3 = pipe(
prompt="a beautiful Asian woman wearing a red camisole and an orange cat on a bed. clear background.",
negative_prompt="blur, blurry",
input_image=image_2, denoising_strength=0.7,
height=1024, width=1024,
cfg_scale=2.0, num_inference_steps=50,
seed=102
)
image_3.save("image_15.jpg")
pipe = FluxImagePipeline.from_model_manager(model_manager, controlnet_config_units=[
ControlNetConfigUnit(
processor_id="tile",
model_path="models/ControlNet/jasperai/Flux.1-dev-Controlnet-Upscaler/diffusion_pytorch_model.safetensors",
scale=0.7
),
],device="cuda")
pipe.enable_cpu_offload()
pipe.dit.quantize()
for model in pipe.controlnet.models:
model.quantize()
image_4 = pipe(
prompt="a beautiful Asian woman wearing a red camisole and an orange cat on a bed. highly detailed, delicate skin texture, clear background.",
controlnet_image=image_3.resize((2048, 2048)),
input_image=image_3.resize((2048, 2048)), denoising_strength=0.99,
height=2048, width=2048, tiled=True,
seed=103
)
image_4.save("image_16.jpg")
image_5 = pipe(
prompt="a beautiful Asian woman wearing a red camisole and an orange cat on a bed. highly detailed, delicate skin texture, clear background.",
controlnet_image=image_4.resize((4096, 4096)),
input_image=image_4.resize((4096, 4096)), denoising_strength=0.99,
height=4096, width=4096, tiled=True,
seed=104
)
image_5.save("image_17.jpg")
download_models(["Annotators:Depth", "Annotators:Normal"])
download_customized_models(
model_id="LiblibAI/FLUX.1-dev-LoRA-AntiBlur",
origin_file_path="FLUX-dev-lora-AntiBlur.safetensors",
local_dir="models/lora"
)
example_1()
example_2()
example_3()
example_4()
example_5()
example_6()
example_7()