|
from .base_prompter import BasePrompter |
|
from ..models.flux_text_encoder import FluxTextEncoder2 |
|
from ..models.sd3_text_encoder import SD3TextEncoder1 |
|
from transformers import CLIPTokenizer, T5TokenizerFast |
|
import os, torch |
|
|
|
|
|
class FluxPrompter(BasePrompter): |
|
def __init__( |
|
self, |
|
tokenizer_1_path=None, |
|
tokenizer_2_path=None |
|
): |
|
if tokenizer_1_path is None: |
|
base_path = os.path.dirname(os.path.dirname(__file__)) |
|
tokenizer_1_path = os.path.join(base_path, "tokenizer_configs/flux/tokenizer_1") |
|
if tokenizer_2_path is None: |
|
base_path = os.path.dirname(os.path.dirname(__file__)) |
|
tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/flux/tokenizer_2") |
|
super().__init__() |
|
self.tokenizer_1 = CLIPTokenizer.from_pretrained(tokenizer_1_path) |
|
self.tokenizer_2 = T5TokenizerFast.from_pretrained(tokenizer_2_path) |
|
self.text_encoder_1: SD3TextEncoder1 = None |
|
self.text_encoder_2: FluxTextEncoder2 = None |
|
|
|
|
|
def fetch_models(self, text_encoder_1: SD3TextEncoder1 = None, text_encoder_2: FluxTextEncoder2 = None): |
|
self.text_encoder_1 = text_encoder_1 |
|
self.text_encoder_2 = text_encoder_2 |
|
|
|
|
|
def encode_prompt_using_clip(self, prompt, text_encoder, tokenizer, max_length, device): |
|
input_ids = tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True |
|
).input_ids.to(device) |
|
pooled_prompt_emb, _ = text_encoder(input_ids) |
|
return pooled_prompt_emb |
|
|
|
|
|
def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device): |
|
input_ids = tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
).input_ids.to(device) |
|
prompt_emb = text_encoder(input_ids) |
|
return prompt_emb |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
positive=True, |
|
device="cuda", |
|
t5_sequence_length=512, |
|
): |
|
prompt = self.process_prompt(prompt, positive=positive) |
|
|
|
|
|
pooled_prompt_emb = self.encode_prompt_using_clip(prompt, self.text_encoder_1, self.tokenizer_1, 77, device) |
|
|
|
|
|
prompt_emb = self.encode_prompt_using_t5(prompt, self.text_encoder_2, self.tokenizer_2, t5_sequence_length, device) |
|
|
|
|
|
text_ids = torch.zeros(prompt_emb.shape[0], prompt_emb.shape[1], 3).to(device=device, dtype=prompt_emb.dtype) |
|
|
|
return prompt_emb, pooled_prompt_emb, text_ids |
|
|